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1. Introduction

The concept of osculating circle and evolute is well-known in differential geometry of
the Euclidean plane. In this paper, we discuss some properties of these objects in the pseudo-
Euclidean plane and compute them for selected curves.

The pseudo-Euclidean plane EV! is the real affine plane A’ furnished with a non-
singular indefinite quadratic form q(x) = (x,x), where (,) denotes the pseudo-scalar
product. This pseudo-scalar product can be expressed as (x, y)=x,;y; —X,y, in a suitable
basis. The length of a vector x is defined as |x|=|q(x)|". Orthogonality of vectors x,y
means (x, y)=0.

To any vector x, we define its sign as sgn x =sgn (q(x)). We say that x is a space-
like vector or a time-like vector or a light-like vector if sgn x =1 or sgn x = —1 or sgn x =0,
respectively. We shall make use of a perpendicularity operator x — L x which assigns the
vector L x = (sgn x x,,sgn x x;) to a vector x = (xq, X;).

According to the type of the tangent vector at a point of a curve, the point is said to be
a space-like or a time-like or a light-like point of the curve. We exclude all light-like points
from all curves.

In the pseudo-Euclidean plane we can consider parametrized curves similarly as in the
Euclidean plane. Recall that a parametrization P(t),t € I is a unit speed parametrization if
|P'(t)| =1 for allt. Any regular curve in the pseudo-Euclidean plane (without light-like
points) possesses a unit speed parametrization. At every regular (and not light-like) point P (t)
of a curve we have the oriented Frenet frame consisting of vectors

t@®) =P'@®)/IP'D], mne(t) =Lt) (1.1)
and the oriented curvature
kor(t) = det(P'(t), P"(t))/IP'(®)]? (1.2)

see [1]. Moreover, it holds sgn n,,.(t) = sgn k,,(t).
We refer to [1] for more details about curves in the pseudo-Euclidean plane.
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2. Osculating pseudo-circles of curves in the pseudo-Euclidean plane

In the pseudo-Euclidean plane the role of circles play Euclidean equilateral hyperbolas
with equation (x; — s;)% — (x, — s,)% = 8p?, where S = (s4,5,) is the centre, p > 0 is the
radius of the pseudo-circles and § € {—1,1}. If § =1 or § = —1 then all points of the
pseudo-circle are time-like or space-like hence, we speak about time-like or space-like
pseudo-circles, respectively.

Proposition 1 and definition Ar a non-inflexional and non-light-like point of a curve, there
exists a unique pseudo-circle having at least three point contact with the curve at the common
point. We call this pseudo-circle the osculating pseudo-circle of the curve at that point.

Proof: Let P(t) be a parametrized curve. Consider the contact function of the curve with a
pseudo-circle given by f(£)=(P(t) - S,P(t) - S) — &r?,§ € {—1, 1} (see [2], Chapter 8).
The conditions for at least three point contact are f(t) =0, f'(t) = 0 and f"'(t) = 0. So we
have equations:
(P(t)- S,P(t)-S) —&1r%=0
2(P(t)- S, P'(t))=0
2(P(t) - S,P"(0)) + 2(P' (1), P'(£))=0

From the second equation we have P'(t) L P(t) — S, so P(t) — S = cn,,. Compute ¢ from
the third equation:

_ (POPO)
CIG)

P'(t) _ _(P'OP @) ®).P (D)
POp (o) Ve have ¢ = (LP (D,P"(0))

1/2

Fromn,. =1t=1

Leta = (ay,a,), 1 a =sgn{a,a)(a,,a,) and b = (b, b,) be vectors. Compute { L a, b):
( L a,b) =sgn{a,a)(a,, a,), (b, by)) = —sgn{a,a)det(a,b)
Using this, we find that
_POPOPOP O KPP 1
—sgn(P’(¢), P'(t))det (P'(t),P""(t))  det (P'(t),P"(t)) kor

Finally, from the first equation we have that c?(n,,, n,,) = 8r?, ie.§ = sgn n,, = sgn k,,,

so the radius of the osculating pseudo-circle is r = Its center is expressed as follows:

[korl
[(P' (), P'(£)]3/2 1
S=P(t) - =P(t) — ———=ny-(t
( ) det (P,(t), P”(t)) nOT ( ) kor(t) nor( )
Moreover if § =1 or 6 = —1 then the osculating pseudo-circle is time-like or space-like

pseudo-circle, respectively.

Proposition 2 (c.f. [4]) Let P(t) = (x(t),y(t)) be a parametrized curve and Py = P(t,) a
non-inflexional and non-light-like point of this curve. Let P, = P(t;) and P, = P(t,) be two
different points of the curve “approaching”P, and such that t; < t, < t,. The osculating



PROCEEDINGS OF SYMPOSIUM ON COMPUTER GEOMETRY SCG’ 2011, VOLUME 20
pp. Xy -Xz

pseudo-circle of the curve at Py is limit of pseudo-circles passing through points P, P;
and Ps.

Proof Let k be a pseudo-circle of equation k: (x — a)? — (y — b)? — §r% = 0. This pseudo-
circle passes through points Py, P; and P;.

We define a function g(t) = (x(t) — a)? — (y(t) — b)? — 672. It is obvious that g(t,) =
g(ty) = g(t,) =0, while t; <ty < t,. From Rolle’s theorem there exist points P; = P(t3)
and P, = P(t,) suchthat t; < t; <ty <ty <t,andg'(t;) = g'(t,) = 0. We get:

g'(®) = 2(x(t) —a)x'(t) — 2(y(t) — b)y'(t)
g'(t3) = 2(x(t3) —a)x'(t3) — 2(y(t3) —=b)y'(t3) =0, t; < t3 <ty
g'(ty) = 2(x(ty) —a)x'(ty) — 2(y(ty) —D)y'(ts) =0, ty <ty <ty

We can use Rolle’s theorem one more time and we have that there exist a point P; = P(ts5)
such that t; < ts < t, and g®(ts) = 0. So we get:

g"(ts) = 2| (¥'(ts))” + (x(ts) — " (t5)| = 2[ (' (£))” + ((ts) — b)Y (85))]

Since the limit of t; and t, is ty, so it is also the limit of 3, t,, t5. Therefore we have a system
of three equations in three unknowns a, b and r.

(x(to) — @) = (¥(to) —b)? =612 =0
(x(to) — a)x'(to) — (y(to) — b)y'(to) = 0
[ (60))” + (et = " (80) | — [ (7' (60))” + ((t0) = By (£0)] = 0
From the second and third equations follows:
(') = (' (t0))")
x'(t0)y" (to) — x" (o) y' (to)
((<'t))" = (r'(to))”)

x'(to)y"" (to) — x" (t0)y' (to)
These equations can be expressed in the following form:

(P'(to), P'(to))

a=x(ty) — y'(to) (2.1)

b =y(ty) —

x' (o) (2.2)

@ =M G ) P
_ (P/(t), P )
b= G e Py

From the expression of the oriented curvature (see [1])

det (P"(to), P"(to)) _ sgn(P’(to), P'(to))det (P'(to), P"(to))
[<P’ (to), P' (E))I? (P'(to), P'(to)) (P’ (o), P’ (to))|*/2

can a and b be expressed in the following form:

L s () P') o
Kor (to) [<P'(£0), P (e )72 0

kor(to) =

a = x(ty) —
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1 sgn(P'(ty), P'(to))

b =y(to) - , , x'(to)
% kor(to) (P (), P (Eo))[/2 ™ 7
From the first equation of the system we have r = P 1(t S Note that the vector
or\to

sgn(P’'(to), P'(to)) |, sgn(P’'(ty), P'(to))
[ [ 1/2 y (tO)l ’ ’ 1/2 X (tO)
[<P’ (to), P (L))l [<P’ (to), P (L))l
is the oriented normal vector n,,.(t,) of our curve.

So the solution of this system of equations is the center and the radius of the osculating
pseudo-circle at Py:

1 1
$= P(tO) B kor(t )nor(tO) and 1= [kor(to)l

Example 1 Let us consider a Euclidean circle P(t) = (rcost,rsint), t € (—%n,%n).
Points P(t), t € (—% n,% n) U G n,%n) are time-like, the points P(t),t € G n,%n) U

G n,%n) are space-like and the points P (— in) P G n) P G n) P G n) are light-like (see

[1], Ex. 1). At space-like and time-like points of the circle, we have t, n,, and k,, expressed
as:
¢ = ( sint cost )
~\ |cos 2t|Y/2" |cos 2t|1/?

_( cost sint ) 'fte(l 3 )U(S 7)
Tor = |cos 2t|1/2’  |cos 2t|1/2 ! 2" 2"

cost sint _ 1 1 3 5
Tor = (_ |cos 2t|1/2” |cos 2t|1/2> ifre (‘Z”’Z") v (Z”'Z”)
1
Kor = r|cos 2t|3/2

So the center and the radius of the osculating pseudo-circle are:

1 1 3 5
S =(rcost,rsint) + rcos2t(cost,—sint) ift¢ {—Zn,zn,zn,zn}

1, = r|cos 2t|3/?
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Fig. 1 Osculating pseudo-circles of a Euclidean circle at parameters
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t=0,t=mn/6,t=m/3
Example 2 Let us consider a Euclidean ellipse P(t) = (acost,bsint),t € (0,2m). Denote
the function a?sin? t — b2 cos? t as g(t). Points of the ellipse are time-like if g(t) < 0, they
are space-like if g(t) > 0, and are light-like if g(t) = 0. In space-like and time-like points of
the ellipse, we have t, n,, and k,, expressed as follows:

_( asint bcost)

g2 g2
bcost asint )
( - ) if g(t) >0

P TOIE P TGIRE
bcost asint )
tor = (~ oo gome) 9O <0
ab
Kor = g PP

So the center and the radius of the osculating pseudo-circle are:

t
S = (acost,bsint) —%(bcost,—asint) ifg(t) #0

3/2
lg(@®) |
r=—
ab
N
e ———— \ /- —_—
- e —
- ~ / [N - ~—
/ \\ 3 g e o
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Fig. 2 Osculating pseudo-circles of an ellipse at parameters t = 0,t = 1/6,t = w/3

Example 3 Let us consider a parabola P(t) = (t?/2p,t),t € (—o,0). Points of the

parabola are time-like if |t| < p, they are space-like if |t| > p, and are light-like if |[t| = p. In
space-like and time-like points of the parabola, we have:

= (e, )
- [t2 _p2|1/2' |t2 —p2|1/2

p t .
Nor = <|t2 — 2|2 |¢2 _p2|1/2> if [t| >p
p t .
Nor = (_ |£2 _p2|1/2'_ |tz — p2|1/2) if [t] <p

2

p

Kor = |62 — p2|3/2

As above, the center and the radius of the osculating pseudo-circle at any point P(t) are:
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Fig. 3 Osculating pseudo-circles of a parabola at parameters t = —2,t = 0,t = 2

3. Evolute of a curve in the pseudo-Euclidean plane

As in the Euclidean plane, the evolute of a curve is the locus of all its centers of
osculating circles (see [2], Chapter 8). From this we have the following definition:

Definition 1 The evolute of a curve, with its inflexion and light-like points removed, is defined
as the curve given by

E(t) = P(t) —ﬁnor(t). (3.1)

Note that the evolute of a curve can be expressed in coordinates using equations (2.1)
and (2.2). This expression is much more convenient to use in computation of evolute.

Points of evolutes of curves in pseudo-Euclidean plane have similar properties to those
in Euclidean case. We discuss these properties in the following proposition.

Recall that a vertex of a parametrized curve P(t) is a point P(ty), in which the first
derivate of curvature vanishes, i.e. k;,(t,) = 0. A point P(t,) is an ordinary vertex if
kor(ty) =0 and ky,(ty) #0. A regular point of a parametrized curve is a point
where P’ (t) # 0. Consider a unit-speed parametrization of the curve. Using Frenet formulas

in the pseudo-Euclidean plane t' = k,,, n', = k,,t (see [1]) it is easy to show that for the
first three derivates of evolute it holds:

’ kor(t)
E'() = 2 Mor (V) (3.2)

2
gy — Kkor(® k@ (kor(®)
E (t) " Kor(to) t(t) + <k,2,r(t) —2 k3, (t) nor(t) (3.3)
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(k' (t))2
177 _ ko-(£) . or
BT = <2 Kor(t) 3 K2,(t) )t(t) +
(k4r0)’
/ kot (£) kor(®)kor(t) or
+ <k0r(t) teo 6 PR 6 PENE) )nor(t) (3.4)

Proposition 3 Let P(t) be a parametrized curve and E (t)its evolute.

a) A point E(ty) of the evolute is a regular point if and only if the point P(ty) is not
a vertex of the given curve.

b) If the point P(ty) is an ordinary vertex of the curve then the point E(ty) is a cusp of
the first kind of the evolute.

Proof a) The assertion follows immediately from the formula (3.2).

b) From a) we have that if P(t,) is a vertex of the curve, E(t,) is a singular point of evolute.
From (3.3) and (3.4) we have the second and the third derivate of the evolute in its ordinary
vertex expressed as:

E"(ty) = —kzr (ZZ;

(to) " (k)
k(o) (0 kgrao)

We see that the vectors E''(ty) and E'''(t,) are linearly independent, so E (t,) is a cusp of the
first kind of the evolute.

n,, (to) # 0

Em(to) = 2 or(to) # 0

Example4 Example 1 shows that the evolute of a Euclidean circle
P(t) = (rcost,rsint),t € (— %n,%n) is expressed as:
1 1 3 5 }

E(t) = (rcost,rsint) + rcos 2t (cost,—sint) 1ft${—z7t TR

In coordinates we have the following expression of the evolute of the Euclidean circle:
x(t) = 2rcos3t,y(t) = 2rsindt

It is obvious that this curve is the image of the astroid Q(t) = (cos®t,sin3t) in the affine
transformation x~ = 2rx and y~ = 2ry.

Example 5 Example 2 shows that the evolute of a Euclidean

ellipse P(t) = (acost,asint),t € (0,2m) is expressed as:

a’?sin?t — b% cos? t
ab

In coordinates we have the following expression of the evolute of the ellipse:

E(t) = (acost,bsint) — (bcost,—asint) ifa?sin?t—b?cos’t # 0

a’+b* a’+b? |
x(t) = cos° t, y(t) = L sin t
It is obvious that this curve is the image of the astroid Q(t) = (cos3t,sin3t) in the affine
. ~ a?+b? - a’+p?
transformation x~ = X and y~ = .
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Example 6 Example 3 shows that the evolute of a parabola P(t) = (t?/2p,t),t € (—o0, )

1S:
E(t) = (—,t) + P (1,;) if [t] #p

2p P
In coordinates we have the following expression of the evolute of the parabola:
3 p 1
t :—tz——’ t :—t?’
W= =5 Y=

It is obvious that this curve is the image of semi-cubical parabola Q(t) = (t?,t3) in the affine
onx~ =>x P2 ~_- L
transformation x™ = - x —andy~ = .

Remark 1 From Example 5 and Example 6, it is obvious that evolutes of a parabola and an
ellipse in the pseudo-Euclidean plane look similar to the ones in the classic Euclidean plane.
On the other hand, the evolute of the Euclidean circle from Example 4 is strongly different to
that in the Euclidean plane. While in the Euclidean plane this evolute degenerates to a single
point, in the pseudo-Euclidean case it is an actual curve.

Remark 2 Another very interesting property of evolutes is that a curve (without light-like
points) does not intersect its evolute, see [3], Prop 3.3. As well-known, this does not hold in
the Euclidean plane because every ellipse intersects its evolute, there.
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Fig. 4 Evolutes of a Euclidean circle, a Euclidean ellipse and a parabola
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