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Abstract Abstrakt
In this paper, we discuss some properties of
evolutes of curves in the Minkowski plane.

Tento článok sa venuje vybraným
vlastnostiam evolút kriviek ležiacich v
Minkowského rovine.
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1 Introduction
The concept of evolute is well-known in differential geometry of the Euclidean plane. In [2]
we have shown some properties of evolute in the Minkowski plane which correspond to the
Euclidean case.

Authors Saloom and Tari studied smooth and regular curves in the Minkowski plane re-
lated by their contact with pseudo-circles in paper [5]. They arrived at the concept of evolute
in quite a natural way and obtained interesting results about collocation of points of evolute
with respect to points of basic curve. Some of the mentioned properties have no analogy in
the Euclidean plane. After slight modifications, the mentioned properties can be formulated as
follows:

Theorem 1.1. ([5], Prop. 3.3) Let P (t) be a connected space-like or time-like curve. Then P (t)
does not intersect its evolute.

Theorem 1.2. ([5], Prop. 4.1) Let P (t) be a curve without inflection points. Then

(i) the light-like points of P (t) are isolated points,

(ii) the caustic of P (t) is a regular curve at a light-like point of P (t) and has ordinary tangency
with P (t) at such point. Furthermore, P (t) and its caustic lie locally on opposite sides of
their common tangent line at the light-like point.

Theorem 1.3. ([5], Th. 4.3) Let P (t) be an oval in the Minkowski plane. Then,

(i) P (t) has exactly four light-like points,

(ii) the caustic of P (t) is a closed curve which lies in the complement of the interior of P (t),
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(iii) the evolute of each space-like and time-like component of P (t) has at least one singular
point.

Saloom and Tari applied tools from theory of singularities to obtain geometric information
about evolutes in the Minkowski plane. We consider such approach being a rather complicated
one. Moreover, their proof of Theorem 1.3 (ii) is not sufficient because they did not disprove
a case when the evolute of a space-like or time-like component of an oval possibly intersects
other such component of the oval.

The goal of our paper is to re-prove Theorems 1.2 and 1.3 using only elementary tools of
classical differential geometry. Particularly, we prefer to write ‘augmented evolute’ instead of
‘caustic’ from [5] when speaking about evolute defined also at light-like points.

2 Preliminaries
The Minkowski plane E1,1 is the real affine plane A2 furnished with a nonsingular indefinite
bilinear form 〈x,y〉 on vectors of A2, called the pseudo-scalar product. This pseudo-scalar
product can be expressed as 〈x,y〉 = x1y1 − x2y2 in a suitable basis where x = (x1, x2),
y = (y1, y2). In our paper we deal only with such bases.

For any vector x = (x1, x2) we define its lenght as |x| = |〈x,x〉| 12 , and its sign as
sgnx = sgn〈x,x〉. We say that x is a space-like vector or a time-like vector or a light-like
vector if sgnx = 1 or sgnx = −1 or sgnx = 0, respectively.

We say that vectors x and y are perpendicular if 〈x,y〉 = 0. Perpendicularity of these
vectors is denoted by x ⊥ y.

There are two useful operators on vectors in the Minkowski plane: The symmetry operator
x → Sx assigning the vector Sx = (x2, x1) to vector x, and the perpendicularity operator
x → x⊥ which assigns the vector x⊥ = sgnxSx to vector x. Both vectors Sx and x⊥ are
perpendicular to x. Besides this, the basis (x,x⊥) is positively oriented for every non-light-like
vector x. Apparently, the symmetry operator S is linear.

Fig. 1. Vectors Sx and x⊥ assigned to vector x = (−1, 2). Both vectors Sx
and x⊥ are perpendicular to x, the basis (x,x⊥) is positively oriented
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From the coordinate expression of the pseudo-scalar product and from the previous defi-
nitions we come to the following properties of vectors in the Minkowski plane.

〈x,y〉 = det(x,Sy) (1)
det(x,y) = − det(Sx,Sy) (2)
det(x,y)z = det(x, z)y + det(z,y)x (3)
x is light-like ⇐⇒ Sx = δx, where δ ∈ {−1, 1} (4)

We can approach parametrized curves in the Minkowski plane similarly as in the Eu-
clidean plane. According to the type of the tangent vector at a point of a curve, the point is said
to be a space-like or a time-like or a light-like point of the curve.

At every regular and not light-like point P (t) of a curve we have the oriented Frenet frame
consisting of vectors

t(t) =
P ′(t)

|P ′(t))|
, n(t) = t(t)⊥

and the (oriented) curvature1

k(t) =
det(P ′(t), P ′′(t))

|〈P ′(t), P ′(t)〉| 32
= − 〈P

′′(t),SP ′(t)〉
|〈P ′(t), P ′(t)〉| 32

.

In what follows, we often simplify formulas by omitting the variable (or its particular
value) in parametrizations of curves and in their derivatives.

3 Evolutes in the Minkowski plane
The aim of this section is to describe some properties of evolute in the Minkowski plane. As
in the Euclidean plane, evolute of a curve in the Minkowski plane is the locus of centers of
all its osculating (pseudo-)circles. Let us note that pseudo-circles in the Minkowski plane are
equilateral hyperbolas with light-like asymptotes from the Euclidean point of view. In the for-
mula for centre of osculating pseudo-circle of a curve in the Minkowski plane (see [1] or [5]),
there appears a sign-change comparing to the Euclidean case. This is reflected in the following
definition.

Definition 3.1. Evolute of a curve P (t), with its inflexion and light-like points removed, is
defined as

E(t) = P (t)− 1

k(t)
n(t).

Using the definition of the normal vector n(t) and of the curvature k(t) we get easily a
handy computational formula

E(t) = P (t)− 〈P ′(t), P ′(t)〉
det(P ′(t), P ′′(t))

SP ′(t) (5)

1Saloom and Tari in [5], Sec. 3 also present a formula for oriented curvature but with incorrect sign which is equal
to sgnP ′(t).
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We emphasize that the evolute E(t) is not defined at inflexion and light-like points of the
curve P (t). Nevertheless, we wish to extend the definition of evolute also for light-like points
of the basic curve. We will use an equi-affine parametrization of the basic curve for that sake.
Such parametrization is defined by the condition

det(P ′(t), P ′′(t)) = 1 (6)

and it exists for any curve not containing inflexion points, see e.g. [4], §10 for more details.
From identities (1), (2) and (6) it immediately follows

〈SP ′(t), P ′′(t)〉 = det(SP ′(t),SP ′′(t)) = −1 (7)

for every equi-affine parametrization P (t).

Lemma 3.1. Let P (t) be a curve without inflexion points expressed in an equi-affine parametriza-
tion. Then

(a) E(t) = P (t)− 〈P ′(t), P ′(t)〉SP ′(t)

(b) E ′(t) = −3〈P ′(t), P ′′(t)〉SP ′(t)

(c) E ′′(t) = −3〈P ′(t), P ′′(t)〉SP ′′(t)− 3〈P ′(t), P ′′(t)〉′SP ′(t)

Proof. (a) The assertion is a simple consequence of formulas (5) and (6).

(b) Using a straight-forward calculation we get

E ′ = P ′ − 〈P ′, P ′〉′SP ′ − 〈P ′, P ′〉SP ′′

= P ′ − 2〈P ′, P ′′〉SP ′ − 〈P ′, P ′〉SP ′′

Further, equalities (1), (3), (2) and (7) imply

E ′ = P ′ − 2〈P ′, P ′′〉SP ′ − det(P ′,SP ′)SP ′′

= P ′ − 3〈P ′, P ′′〉SP ′ − 〈SP ′′, P ′〉P ′

= P ′ − 3〈P ′, P ′′〉SP ′ − det(P ′, P ′′)P ′ = −3〈P ′, P ′′〉SP ′

(c) Now we can easily compute the second derivative of this evolute

E ′′ = −3〈P ′, P ′′〉SP ′′ − 3〈P ′, P ′′〉′SP ′

The right-hand side of the equality in Lemma 3.1 a) is defined also at light-like points, the
value is P (t), see Lemma 3.2 below. We call the corresponding curve the augmented evolute of
the considered curve. By abuse of notation, we denote the augmented evolute by E(t), again.
Apparently, this curve is differentiable also at light-like points.

The next lemma provides values of the augmented evolute and its first two derivatives at
light-like points, considering a basic curve in an equi-affine parametrization.

Lemma 3.2. Let P (t0) be a light-like point of a curve expressed in an equi-affine parametriza-
tion. Then
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(a) E(t0) = P (t0)

(b) E ′(t0) = 3P ′(t0)

(c) E ′′(t0) = 3δSP ′′(t0)− 3〈P ′(t0), P ′′(t0)〉′SP ′(t0), δ ∈ {−1, 1}

(d) det(P ′(t0), E
′′(t0)) = −3

Proof. (a) From the expression of evolute in Lemma 3.1, the equality P (t0) = E(t0) obviously
holds at light-like points.

(b) Let us consider the first derivative of evolute from Lemma 3.1 at light-like point. Using the
property (4) of light-like points and formulas (1) and (7) we get

E ′ = −3〈P ′, P ′′〉SP ′ = −3 det(P ′,SP ′′)SP ′ = −3 det(δSP ′,SP ′′)δP ′ = 3P ′

(c) In virtue of Lemma 3.1 c) and formulas (7) we have

E ′′ = −3〈δSP ′, P ′′〉SP ′′ − 3〈P ′, P ′′〉′SP ′ = 3δSP ′′ − 3〈P ′, P ′′〉′SP ′

(d) Calculating det(P ′(t0), E
′′(t0)) we make use of the previous lemma and of the relations (4)

and (7):

det(P ′, E ′′) = det(P ′, 3δSP ′′ − 3〈P ′, P ′′〉′SP ′)
= 3δ det(δSP ′,SP ′′)− 3〈P ′, P ′′〉′ det(δSP ′,SP ′) = −3

Theorem 3.1. The augmented evolute E(t) of a curve P (t) without inflexion points is a regular
curve at light-like points with the value E(t0) = P (t0) at such point. The basic curve and
its augmented evolute have common tangent line at light-like point. Moreover, the augmented
evolute and the curve lie locally in opposite half-planes considering the common tangent line at
light-like point.

Proof. Just, the assertions of the foregoing lemma were reformulated geometrically (after choos-
ing an equi-affine parametrization of the basic curve).

Note 3.1. The last theorem is equivalent to the second part of Theorem 1.2. What is different is
that we proved the described properties within classical differential geometry.
The first assertion of Theorem 1.2 can be proven using elementary methods, as well. Indeed, let
us assume that we have given a sequence of light-like points P (tn) and that t0 = lim tn, t0 6= tn
for all n. Obviously, the point P (t0) is light-like, too. We apply the Rolle´s Theorem to the
function 〈P ′(t), P ′(t)〉 on the closed interval with end-points t0, tn. Hence, there is a point un
in that interval such that 〈P ′(un), P ′′(un)〉 = 0. Therefore 〈P ′(t0), P ′′(t0)〉 = 0. As P (t0) is
light-like, SP ′(t0) = δP ′(t0), δ ∈ {−1, 1}. This together with (2) yields that

det(P ′(t0), P
′′(t0)) = −〈SP ′(t0), P ′′(t0)〉 = δ〈P ′(t0), P ′′(t0)〉 = 0

This is a contradiction to the assumption that light-like points are non-inflexion ones.
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4 Evolutes of convex curves and ovals
Under a convex curve we mean a regular planar curve that lies on one side of each its tangent
line (in supporting half-plane); c.f. [3], Chapter 1.7. At a non-inflexion point, the support-
ing half-plane of a convex curve is determined by the second derivative vector of the curve
parametrization. Clearly, supporting half-planes contain the convex hull of our curve.

Theorem 4.1. The augmented evolute of a (closed or non-closed) convex curve without in-
flexion points in the Minkowski plane does not intersect interior of the convex closure of such
curve.

Proof. The assertion holds trivially at light-like points of the considered curve. Let P (t), t ∈ I
be an equi-affine parametrization of a non-light-like component of such curve. With respect to
Lemma 3.1 b) it suffices to prove that the vectors E(t) − P (t) = −〈P ′(t), P ′(t)〉SP ′(t) and
P ′′(t) are pointed at different sides of the tangent line at P (t). Therefore, we have to prove that
det(P ′(t), 〈P ′(t), P ′(t)〉SP ′(t)) det(P ′(t), P ′′(t)) > 0 everywhere. However the inequality
holds trivially because of (1) and (6).

Note 4.1. As a straight-forward consequence of Theorem 4.1 we get that augmented evolute
of a closed convex curve without inflexion points does not intersect the interior of such curve.
(The interior of a simple closed planar curve is meant in sense of Jordan’s Theorem.) Because
ovals were understood as simple closed curves without inflexion points in [5], and because such
curves are necessarily convex (see [3], Chap. 5-7, Prop. 1) we proved the second assertion of
Theorem 1.3.

Note 4.2. The first assertion of Theorem 1.3 can be slightly generalized to the case of convex
curves: Every convex curve without inflexion points contains at most four light-like points; if
the curve is closed, it contains exactly four such points. The reason for the first statement is
that every convex curve has at most two tangent lines with given direction, and any tangent line
of a convex curve without inflexion points meets the curve in exactly one point. The second
statement is the original one from [5] because such curve is an oval.

Note 4.3. The validity domain of the third assertion of Theorem 1.3 can be extended without
changing the proof presented in [5]: Between any two adjacent light-like points of a curve not
containing inflexion points, there lies at least one vertex. Then, in virtue of [5], Prop. 3.2 or [1],
Prop. 3, the corresponding part of the evolute contains a singular point.

5 Examples
We will illustrate achieved results on evolutes in the Minkowski plane through representatives
of three kinds of basic curves: ovals (ellipse), convex curves that are not ovals (parabola) and
nonconvex curves (Archimedean spiral). In all cases we point up, both analytically as well as
graphically, light-like points of basic curves and the tangent lines at those points which separate
(at most) locally the curve from its evolute.
Example: Let us consider a Euclidean ellipse with parametrization P (t) = (a sin t, b cos t),
t ∈ [0, 2π], see fig. 2, left. Points of this curve are light-like if and only if a2 sin2 t−b2 cos2 t = 0.
The augmented evolute of the considered ellipse is

E(t) = (a sin t, b cos t)− a2 sin2 t− b2 cos2 t
ab

(b cos t,−a sin t).
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Fig. 2. Left: the augmented evolute of the Euclidean ellipse.
Right: the augmented evolute of a Euclidean parabola

Example: Let us consider a Euclidean parabola with parametrization P (t) = (t2/2p, t), where
t ∈ (−∞,∞), see fig. 2, right. The light-like points are described by equation |t| = p. The
augmented evolute is

E(t) =

(
t2

2p
, t

)
+
t2 − p2

t

(
1,
t

p

)
.

Example: We have the Archimedean spiral P (t) = (t cos t, t sin t), t ∈ (0,∞), see fig. 3. Some
light-like points of the spiral such as P (0.403) = (0.37; 0.158), P (1.404) = (0.233; 0.138),
P (2.71) = (−0.246; 0.113), . . . are described by equation tan 2t = 1−t2

2t
. The augmented

evolute is

E(t) = (t cos t, t sin t)− (1− t2) cos 2t− 2t sin 2t

2 + t2
(sin t+ t cos t, cos t− t sin t) .

Let us note that that spiral is a non-convex curve and that the corresponding evolute does inter-
sect the basic curve.

Summary
Our paper discussed some properties of evolutes in the Mikowski plane. It was motivated by
the paper [5]. The goal was to re-prove some theorems from that article using only elementary
methods of classical differential geometry. We consider our approach to be more adequate to
the discussed topics, in contrast to the theory of singularities which was used by authors of
aforementioned article. On the other side we must admit that the scope of their paper is much
wider than of our one.
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Fig. 3. The augmented evolute of the Archimedean spiral
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