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Tensor-product Bézier patches

1. Represent the graph of the polynomial function

f(u, v) = u2 + 4uv + u− 1

as a tensor-product Bézier patch (TPBP) S over the domain D := 〈0, 1〉 × 〈0, 1〉.
Represent the border isocurves of S as

(a) polynomial curves, i.e. in their monomial form,

(b) Bézier curves, i.e. calculate the coordinates of their control vertices.

Calculate the coordinates of the image of (1/2, 1/2) ∈ D

(a) directly, i.e. via substitution,

(b) using the de Casteljau algorithm,

(c) using the bilinear calculation method.

Represent the graph of f(u, v) as TPBP over D via the polar form of f(u, v).

2. Assume a bilinear patch S with control vertices

p00 = (0, 0, 2), p10 = (1, 0,−1), p01 = (0, 1, 1), p11 = (1, 1, 0),

where S is an image of the domain D := 〈0, 1〉 × 〈0, 1〉.
Find the parametric and analytical equations of the tangent plane of S at the image of (1/2, 1/2) ∈ D.

Assume a quadratic Bézier curve Q ⊂ D with control vertices

q0 = (0, 0), q1 = (0, 1), q2 = (1, 0).

Represent the image of Q lying on S as a Bézier curve, i.e. calculate the coordinates of its control
vertices.
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martina.batorova@fmph.uniba.sk



GEOMETRIC MODELLING (2)
http://fractal.dam.fmph.uniba.sk/∼batorova/GM2.html

Ck-continuous composition of tensor-product Bézier patches

3. Assume a patch S created via composition of two TPBP S1 and S2 with control vertices as in fig. 1;
the domains of both S1,S2 are unit squares.

Assume a curve C1 ⊂ S passing through the middle of both the patches, i.e. the u-curve for v = 1/2
(see fig. 2).
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Fig. 1: Coordinates of the patches S1 (left) and S2 (right).

Determine the order k of the Ck-continuity of S along the common isocurve.

Determine the order k of the Ck-continuity of the curve C1.

If necessary, change the coordinates of p11 resp. p10 so that C1 is C1-continuous.

4. Assume the patches S11 and S10 from previous example, with S11 resp. S10 being the patch S after
the change of coordinates of p11 resp. p10.

Determine the order k of the Ck-continuity of the curves C2 and C3, where C2 is the image of the
diagonal of the domain and C3 is the u-curve corresponding to v = 1/4 (see fig. 2).

Remark: Determine the order k of the Ck-continuity of the curves C2, C3 in both the patches
S11,S10.
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Fig. 2: Curves C1, C2, C3 in the domain D of the patch S11 resp. S10.
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Triangular Bézier patches

5. Assume three non-collinear points p0, p1, p2 ∈ A2(R) and use them to define a barycentric coordi-
nate system B.

Determine the barycentric representation of

(a) a point A ∈ 4p0p1p2 and the points pi, i = 0, 1, 2,

(b) a line ` that is parallel to any side of 4p0p1p2 and the sides of 4p0p1p2.

6. Represent the graph of a polynomial function

F (u, v) = 3 + 6u− 2v − u2 + 4uv + 2v2

as a triangular Bézier patch b4 ⊂ R3 defined over a domain

D4 := {(u, v) | u, v ≥ 0, u+ v ≤ 1} ⊂ R2,

i.e. determine the coordinates of its control vertices. Proceed using

(a) a direct substitution into the formula

b4(t) =
∑

i+j+k=n

Bnijk(t) · pijk,

with n ∈ N being the degree of the patch b4(t).

Remark: Bnijk(t) =
(
n
ijk

)
ti0 t

j
1 t
k
2 are Bernstein polynomials of degree n in two variables and the

domainD4 is a barycentric coordinate system s.t. any t ∈ R2 can be expressed as t = (t0, t1, t2)
with t0 + t1 + t2 = 1.

(b) a subdivision of the domain D4, i.e. using the properties of the polynomials Bnijk(t),

(c) the polar form φ4(t̄) of the polynomial F (u, v).

Determine the border curves of such a patch b4(t) and verify your results using F (u, v).

Calculate the coordinates of the image P of p = (1/4, 1/2) ∈ D4 using

(a) a straightforward substitution,

(b) the de Casteljau algorithm,

(c) the polar form of the polynomial F (u, v)

Determine the equation of the tangent plane at P .

Subdivide the patch at P and represent the subpatches as triangular Bézier patches.
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Ck-continuous composition of triangular and tensor-product
Bézier patches

7. Assume two quadratic triangular Bézier patches b4 resp. c4 defined over domains Db4 := 4p0p1p2
resp. Dc4 := 4p′0p1p2, see fig. 3.

Calculate the coordinates of the remaining control vertices of the patch c4 so that the patches b4

and c4 are joined in a C1- resp. C2-continuous manner along the common border.

x

y

Db4

Dc4

p0 = (−1, 0) p1 = (2, 0)

p2 = (0, 3)

p′0 = (3, 4)

b4
c4

(0,−2, 0) (3, 0, 0)

(0, 0, 3)

(2,−1, 0)

(1,−1/2, 2)

(0,−2, 2)

Fig. 3: Domains Db4 and Dc4 (fig. left) and the coordinates of the control vertices of b4 (fig. right).
Remark: Coordinates of p′0, p0, p1, p2 (fig. left) are affine.

8. Assume a tensor-product Bézier patch P� of bidegree (2, 3) resp. a cubic triangular Bézier patch
B4 with control vertices

{pij | i = 0, . . . , 2; j = 0, . . . , 3} resp. {bijk | i+ j + k = 3}

depicted in fig. 4.

Determine if the patches are joined in a C1-continuous manner. Should this not be the case, adjust
the coordinates of the point b111 so that it is.

p00
(0, 0, 1)

p10
(3, 4,−2)

p20
(0, 1, 1)

p01

(0, 12 , 3)

p11

(5,−1
2 , 5)

p21
(2, 0, 3)

p02
(0, 3, 1)

p12
(3, 3,−5)

p22
(1, 2,−1)

p03
(2, 3, 8)

p13
(4, 2,−2)

p23
(1, 2, 1)

= b030

= b021

= b012

= b003

b102= (−1, 2, 3)

b111= (0,−1, 0)

b120= (−2,−1, 3)

b201 = (8, 1,−7)

b210 = (32 , 0, 1)

b300 = (2, 6, 9)

Fig. 4: Control vertices of the patches P� (black) and B4 (red).
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Bilinear and bicubic Coons patches

9. Assume a bilinear Coons patch

S(s, t) = Sc(s, t) + Sd(s, t)− Scd(s, t) =

 st2 + (s2 − 2s+ 1)t+ s
st2 + (s2 − 2s+ 2)t− s− 1

st3 + (1− s)t2 + 4(1− s)t− s− 1

 ,

with s, t ∈ 〈0, 1〉 and

Sc(s, t) = (1− s)c0(t) + sc1(t) being a ruled surfaces with border curves

c0(t) =

 t
2t− 1

t2 + 4t− 1

 and c1(t) =

 t2 + 1
t2 + t− 2
t3 − 2

 ,

Sd(s, t) = (1− t)d0(s) + td1(s) being a ruled surface with border curves d0(s), d1(s),

Scd(s, t) =
(
1− s s

)
·
(
A C
B D

)
·
(

1− t
t

)
being a bilinear patch with corners A,B,C,D.

Determine the parametrizations of the curves d0(s), d1(s) and patches Sc(s, t), Sd(s, t).
Verify the C0-compatibility of the border curves ofS(s, t).

Prove that A = c0(0) = d0(0), C = c1(0) = d0(1), B = c0(1) = d1(0), D = c1(1) = d1(1).

10. Construct a bicubic Coons patch S(s, t) defined over the domain 〈0, 1〉 × 〈0, 1〉 and interpolating
the border curves

c0(t) =

 t
0

t− t2

 , c1(t) =

 t
1
t3

 , d0(s) =

 0
s2

s− s2

 , d1(s) =

1
s
s

 .

Verify the C0-compatibility of the input curves.

Calculate the vector functions ēi(t), f̄i(s), i ∈ {0, 1} s.t. the output patch is C2-compatible; work
with twists

t00 =

 1
0
−1

 , t10 =

−1
2
0

 , t01 =

0
0
2

 , t11 =

1
0
0

 .

Fig. 5: Output patch S(s, t).
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Remark: The patch S(s, t) is defined as

S(s, t) = Sc(s, t) + Sd(s, t)− Scd(s, t)

with subpatches

Sc(s, t) = H3
0 (s)c0(t) +H3

1 (s)ē0(t) +H3
2 (s)ē1(t) +H3

3 (s)c1(t),

Sd(s, t) = H3
0 (t)d0(s) +H3

1 (t)f̄0(s) +H3
2 (t)f̄1(s) +H3

3 (t)d1(s),

Scd(s, t) =


H3

0 (s)
H3

1 (s)
H3

2 (s)
H3

3 (s)


>

·


c0(0) f̄0(0) f̄1(0) c0(1)
ē0(0) t00 t01 ē0(1)
ē1(0) t10 t11 ē1(1)
c1(0) f̄0(1) f̄1(1) c1(1)

 ·

H3

0 (t)
H3

1 (t)
H3

2 (t)
H3

3 (t)

 ,

and H3
i (X), i = 0, . . . , 3 being the cubic Hermite polynomials and B3

i (X), i = 0, . . . , 3 being the
cubic Bernstein polynomials

H3
0 (X) = B3

0(X) +B3
1(X) = 2X3 − 3X2 + 1,

H3
1 (X) = 1/3 ·B3

1(X) = X3 − 2X2 +X,

H3
2 (X) = −1/3 ·B3

2(X) = X3 −X2,

H3
3 (X) = B3

2(s) +B3
3(X) = −2X3 + 3X2.

The functions ēi(t), f̄i(s), i ∈ {0, 1} are calculated using the following formulae:

ēi(t) = H3
0 (t) · d d0

d t
(i) +H3

1 (t) · ti0 +H3
2 (t) · ti1 +H3

3 (t) · d d1
d t

(i),

f̄i(s) = H3
0 (s) · d c0

d s
(i) +H3

1 (s) · t0i +H3
2 (s) · t1i +H3

3 (s) · d c1
d s

(i).

Triangular Coons patches

11. Construct a triangular Coons patch S over the domain D := 4p0p1p2 so that the curves

c0(s) =

2− s
0

1− s

 , c1(s) =

2− 3s
0

1− 2s

 , c2(s) =

2s− 1
0

s− 1

 , s ∈ 〈0, 1〉

are its borders and p0 = (0, 0), p1 = (2, 0), p2 = (0, 2) are the (affine) coordinates of the vertices
of D.

Verify the C0-compatibility of the input data.

Calculate the coordinates of the images of V,W ∈ D, if their (affine) coordinates are

V = (2/3, 2/3) , W = (2/3, 1/3) .
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Rational tensor-product Bézier patches

12. Represent the torus using 16 biquadratic rational tensor-product Bézier patches.

x

z

R

rI II x

y

I II

Fig. 6: Projections of the torus into planes y = 0 (left) and z = 0 (right).

Hint: There are only two different types of patches, I and II (see fig. 6), thus it suffices to calculate
the coordinates and weights of their control vertices. Let I and II lie in the first octant, i.e. let
x ≥ 0, y ≥ 0, z ≥ 0.

The control vertices on each of the borders and their weights can be calculated using 1/4-circles. The
coordinates of the middle point in each of the patches I, II can be determined using geometrical
ideas and properties e.g. the vertex is a point of the plane z − r = 0 (why?), and thus V11 =
(x11, y11, r). Its weight can be determined using weights w0 = w2 = 1√

2
and the fact that the ratio

of the weights of the vertices within given curve is preserved (why?).

Naturally, the coordinates of V11 can be calculated using the de Casteljau algorithm for (u, v) =
(1/2, 1/2), since the coordinates of the image of (1/2, 1/2) are easily available using e.g. the parametriza-
tion of the torus τ(ϕ, θ); this parametrization can be obtained e.g. using the sweeping procedure
and a subsequent substitution of suitable values of ϕ, θ ∈ 〈0, 2π) (which ones?).

13. Represent the torus using 4 biquadratic rational Bézier patches; here, also zero weights are per-
mitted. All the patches are identical, thus it suffices to determine the coordinates only for one of
them, e.g. when y ≥ 0 and z ≥ 0 (see fig. 7).

x

z

R

r

x

y

Fig. 7: Projections of the torus into planes y = 0 (left) and z = 0 (right).
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14. Assume an ellipse E in the plane z = 0 with centre in the origin (0, 0, 0), with a being the length of
the major and b the length of the minor axis, and e being the excentricity i.e. the distance between
each of the focal points and the centre (see fig. 8 left).

Let us construct the cyclide C (see fig. 9) using the ellipse E and a rope of length |a + k| (with
k > 0 being a suitable parameter) in the following fashion. Let us pin one end of the tightened
rope into the focal point (−e, 0, 0) of E and let it move along E . The free end of the rope matches
the surfaces of C.
Represent the cyclide using four identical rational biquadratic Bézier patches. As in the torus case,
it suffices to determine the vertices and weigths only for the part of C with y ≥ 0 and z ≥ 0.

What are the values of a, e, k so that the torus resp. a sphere is obtained?

x

y

E

−e e−a a

|a+ k|

x

z

a+ ea− e a− e a+ e

u = 1
2

Fig. 8: Projections of the cyclide to plane. On the left, the focal points and vertices of the ellipse E are
depicted. On the right, the weights of the corner points are given.

Hint: The construction above is useful to calculate the coordinates of the corner points, the rest
of the vertices can be determined using previous exercises and procedures. In order to determine
the weights of the corner points, use those given in fig. 8 (right).

The rest of the vertices can be determined using the implicit equation of the cyclide:

C(x, y, z) :
(
x2 + y2 + z2 + a2 − e2 − k2

)2 − 4
(
(a2 − e2)y2 + (ax− ek)2

)
= 0,

resp. its parametrization:

γ(ϕ, θ) =
1

a− e cosϕ cos θ
·

k(e− a cosϕ cos θ) + (a2 − e2) cosϕ√
a2 − e2 (a− k cos θ) sinϕ√
a2 − e2 (k − e cosϕ) sin θ

, ϕ, θ ∈ 〈0, 2π〉.

The coordinates of the remaining control vertex p11 and its weight are calculated in the same way
as in the torus case in exercise 13. Use the values u = 1/2 resp. values θ = π

2 , ϕ ∈ 〈0, π〉.

Fig. 9: Cyclide as 4 rational Bézier patches.
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B-splines and NURBS

15. Assume the quadratic B-spline functions {N2
i (u) | i = 0, 1, 2} defined over the knot vector U :=

〈u0, u1, u2, u3, u4, u5〉.
Construct the B-spline functions {N2

i (u)} over both the uniformed U = 〈0, 1, 2, 3, 4, 5〉 and non-
uniformed knot vector U containing multiple knots. Draw their graphs.

Determine the {N2
i (u)} functions defined over the knot vector U = 〈0, 0, 0, 1, 1, 1〉 and interpret the

result.

16. Assume a B-spline curve B(u) with control vertices 〈V0, . . . , V4〉 defined over the knot vector

U := 〈0, 0, 0, 1, 5/2, 3, 3, 3〉 .

Determine the number of segments of the spline B(u) and a degree of each of those segments. Draw
its graph.

17. (NURBS circle of nine points) Represent the circle k = [(0, 0); r] as a quadratic non-uniformed
rational B-spline curve (NURBS) with control vertices 〈V0, . . . , V8 | V0 = V8〉. These vertices are
distributed uniformly along a square s.t. V0 = V8.

Hint: One should assign a set of weights 〈w0, . . . , w8 | w0 = w8〉 to 〈Vi | i = 0, . . . , 8〉 and construct
a suitable knot vector U so that the output NURBS curve interpolates the vertices Vi.

18. Represent a circular cylinder as a NURBS patch of bidegree (2, 1).

Hint: Use exercise 17 and determine a knot vector V corresponding to the v parameter s.t. the
output NURBS patch interpolates the control vertices of both bases of the cylinder.
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