Short Time Fourier Transform (STFT)




Fouriler Transform

Fourier Transform reveals which frequency components
are present in a function:
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Examples (cont’d)
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Limitations of Fourier Transform

-

1. Cannot not provide simultaneous time and frequency
localization.
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Limitations of Fourier Transform (cont’d)

1. Cannot not provide simultaneous time and frequency
localization.

2. Not very useful for analyzing time-variant, non-
stationary signals.




Stationary vs non-stationary signals
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Stationary vs non-stationary signals (cont’d)
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Stationary vs non-stationary signals (cont’d)

Non-stationary signal:
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Stationary vs non-stationary signals (cont’d)

Non-stationary signal:
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Perfect knowledge of what
frequencies exist, but no
Information about where
these frequencies are
located in time!
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Limitations of Fourier Transform (cont’d)

1. Cannot not provide simultaneous time and frequency
localization.

2. Not very useful for analyzing time-variant, non-
stationary signals.

/3. Not appropriate for representing discontinuities or
sharp corners (I.e., requires a large number of Fourier
components to represent discontinuities).
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Representing discontinuities or sharp corners




Representing discontinuities or sharp corners
(cont’d)
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Representing discontinuities or sharp corners
(cont’d)
Original
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Representing discontinuities or sharp corners
(cont’d)
Original
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Representing discontinuities or sharp corners
(cont’d)
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Representing discontinuities or sharp corners
(cont’d)
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Representing discontinuities or sharp corners
(cont’d)
Original
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Representing discontinuities or sharp corners
(cont’d)

Original

N | |

iy

'u\ | Hl

|
|
| |r|| U‘
hh\ﬂu Il ﬂ ﬂ ﬁ_ ) fl\ i,»w-.,uu,.-.,...1~._,.~.,.;‘l.,.-.'1n f“u'lh 'i‘p HH ﬂ Wl .‘

63 J2mux

f(x)= 3 Fwe ¥ ,x=0,1,....N—1

=0



Representing discontinuities or sharp corners
(cont’d)
Original
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Representing discontinuities or sharp corners
(cont’d)
Original
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Short Time Fourier Transform (STFT)

e Segment the signal into narrow time intervals (i.e., narrow
enough to be considered stationary) and take the FT of each
segment.

e Each FT provides the spectral information of a separate
time-slice of the signal, providing simultaneous time and
frequency information.




STFT - Steps

(1) Choose a window function of finite length

(2) Place the window on top of the signal at t=0

(3) Truncate the signal using this window

(4) Compute the FT of the truncated signal, save results.
(5) Incrementally slide the window to the right

(6) Go to step 3, until window reaches the end of the signal




STFT - Definition

Time Frequency  signal to
parameter —parameter  he analyzed

STETY(t',u) = j [ (t)-W (t—t)]-e >™dt

2D function t

STFT of f(t): Windowing Centered at t=t’
computed for each function

window centered at t=t’
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[0 —300] ms = 75 Hz sinusoid

300 — 600] ms = 50 Hz sinusoid
600 — 800] ms = 25 Hz sinusoid
800 — 1000] ms =10 Hz sinusoid
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Choosing Window W(t)

What shape should it have?

— Rectangular, Gaussian, Elliptic ...

How wide should it be?

— Window should be narrow enough to ensure that the portion
of the signal falling within the window is stationary.

— But ... very narrow windows do not offer good localization
In the frequency domain.



STFT Window Size

STFTY(t',u) = j [ £(t)-W (t—t')]-e 2™t

W(t) infinitely long: \WAQKE! > STFT turnsinto FT,
providing excellent frequency localization, but no time localization.

W(t) infinitely short: WAQEEIW] > results in the time
signal (with a phase factor), providing excellent time localization
but no frequency localization.

STFT, (t',u) = j[ f(t)-S(t—t)]-e 2 dt = f (t').e




STFT Window Size (cont’d)

Wide window -=> good frequency resolution, poor
time resolution.

Narrow window => good time resolution, poor
frequency resolution.

Wavelets (later): use multiple window sizes.



Example

different size windows
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Example (cont’d)

STFT: (t',u)

a0n 1000

STFT. (t',u)

a0n 1000




Heisenberg (or Uncertainty) Principle

Time resolution: How well Frequency resolution: How
two spikes in time can be well two spectral components
separated from each other in can be separated from each
the frequency domain. other in the time domain

At and Af cannot be made arbitrarily small!




Heisenberg (or Uncertainty) Principle

« We cannot know the exact time-frequency
representation of a signal.

« We can only know what interval of frequencies are
present in which time intervals.



Wavelets




What Is a wavelet?

« A function that above and below the x-axis with
the following properties:
— Varying frequency
— Limited duration
— Zero average value

« This Is In contrast to sinusoids, used by FT, which have

Infinite duration and constant frequency.
Sinusoid Wavelet




Types of Wavelets

» There are many different wavelets, for example:




Basis Functions Using Wavelets

 Like sin( ) and cos( ) functions in the Fourier Transform,
wavelets can define a set of functions v, (t):

f(t)=2 aw ()

e Span vector space S containing all functions f(t)
that can be represented by v, (t).



Basis Construction — “Mother” Wavelet

The basis can be constructed by applying translations and
scalings (stretch/compress) on the wavelet
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Example:

scale




Basis Construction - Mother Wavelet

* [t 1s convenient to take special values for s and 1 in
defining the wavelet basis: s=27and t=k . 27

| 1
l|1(5: T, t) — ﬁ

\/_Lp(t k.2~ )) — Z%q;(zjt — k) :‘//jk(t)




Continuous Wavelet Transform (CWT)

translation parameter ~ Scale parameter
(measure of time) (measure of frequency)

mother wavelet (i.e.,

normalization window function)
constant



[llustrating CWT

Take a wavelet and compare it to a section at the start
of the original signal.

Calculate a number, C, that represents how closely
correlated the wavelet is with this section of the
signal. The higher C is, the more the similarity.




[llustrating CWT (cont’d)

3. Shift the wavelet to the right and repeat step 2 until you've
covered the whole signal.




[llustrating CWT (cont’d)

4. Scale the wavelet and go to step 1.

5. Repeat steps 1 through 4 for all scales.



Visualize CTW Transform

« \Wavelet analysis produces a time-scale view of the input
signal or image.
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Continuous Wavelet Transform (cont’d)

t)y’ (%) dt

Inverse CWT: f(t)= \/— _”C(T S)W(—)d rds

1
SR VAR C (7, 5) = ﬁj f(
t

Note the double integral!



Fourier Transform vs Wavelet Transform

Fourier
- —

||
\ ' Transform

weighted by F(u)

Constituent sinusoids of different frequencies

f(x)= | F(u)e’”™ du



Fourier Transform vs Wavelet Transform

weighted by C(z,s)
— v

I Transform m ;\/\/\/\—— ""\ff‘

Constituent wavelets of different scales and positions

f (1) = % [ et s E=E)deds

S




Properties of Wavelets

INn time and scale

- The location of the wavelet allows to explicitly represent
the location of events in time.

- The shape of the wavelet allows to represent different
detail or resolution.




Properties of Wavelets (cont’d)

« Sparsity: for functions typically found in practice, many
of the coefficients in a wavelet representation are either
zero or very small.

f(t) = % [[et. S)w(tTT)drds




Properties of Wavelets (cont’d)

(1) = % [[ce S)l//(t_TT)dz'dS

« Adaptability: Can represent functions with discontinuities
or corners more efficiently.

 Linear-time complexity: many wavelet transformations
can be accomplished in O(N) time.



Discrete Wavelet Transform (DWT)

PEDIRIOAO]  (forward DWT)
t

f(t)= Zklelajk%k O  (inverse DWT)

where




Multiresolution Representation Using Wavelets

fine
details
wider, large translations
f(t)zz Zajk‘//jk(t) [
K

coarse
details




Multiresolution Representation Using Wavelets

fine
details

coarse
details




Multiresolution Representation Using Wavelets

fine
: details
narrower, small translations

f(t) = z Zajk’//jk ()

3 coarse
details




Multiresolution Representation Using Wavelets

high resolution

(more details)

low resolution

(less details)

f(t)= Z Zajijk (t)



Pyramidal Coding - Revisited

Approximation Pyramid




Pyramidal Coding - Revisited

Prediction Residual
Pyramid

(with sub-sampling)

@ reconstruct

Approximation Pyramid




details D,

details D,

details D,
L

(without sub-sampling)
[ ] [ ] [ J [ J [ ] [ ] [ ]




Efficient Representation Using Details (cont’d)

representation: L, D, D, Dy
ingeneral: Ly D, D, D;...D,




Reconstruction (synthesis)

details D,

details D,

details D,

L,

(without sub-sampling)
[ J [ J [ ]



Example - Haar Wavelets

« Suppose we are given a 1D "image" with a resolution
of 4 pixels:

197 35]

 The wavelet transform is the following:

[6 2 1 — l] (with sub-sampling)

Lo D; Dy D3



Example - Haar Wavelets (cont’d)

Start by averaging and subsampling the pixels
together (pairwise) to get a new lower resolution

Image:
[ -

To recover the original four pixels from the two
averaged pixels, store some

Resolution Averages Detail Coefficients

1 9 7 3 5] I
2 |18 4] |11 —1]




Example - Haar Wavelets (cont’d)

» Repeating this process on the averages (i.e., low
resolution image) gives the full decomposition:

Resolution Averages Detail Coefficients

9 7 3 5] 1

8 4] [1 —1]
6] 2]

SEEIR ConlseSiienm (6 2 1 — 1]




Example - Haar Wavelets (cont’d)

« The original Image can be reconstructed by adding or
subtracting the detail coefficients from the lower-
resolution representations.

6 2 1 —1]

Lo Dy Dy Ds

1-1
6] =l — IEEEl




Example - Haar Wavelets (cont’d)

Resolution Approximation Detail Coefficients

Detail coefficients
become smaller and
smaller scale decreases.

How should we
compute the detail
coefficients D. ?




Multiresolution Conditions

 |f a set of functions V can be represented by a weighted
sum of y(2)t - k), then a larger set, including V, can be
represented by a weighted sum of y(2/*'1 - k).

high
resolution
y(2*1t - k)
J
(2t - K)
low

resolution




Multiresolution Conditions (cont’d)




1D Haar Wavelets

» Haar scaling and wavelet functions:

(1) ()

computes average computes details
(low pass) (high pass)



1D Haar Wavelets (cont’d)

Let’s consider the spaces corresponding to
different resolution 1D images:

Vi . 1-pixel — (=0)
Vl E B 2—pixe| (J:]-)
Vs e o o o 4-pixel U=2)

etc.



1D Haar Wavelets (cont’d)
J=0
« 'V, represents the space of 1-pixel (2°-pixel) images

« Think of a 1-pixel image as a function that is constant
over [0,1)

Example: _I width: 1

0 1



1D Haar Wavelets (cont’d)
=1
* V, represents the space of all 2-pixel (2*-pixel) images

« Think of a 2-pixel image as a function having 2! equal-
sized constant pieces over the interval [0, 1).

I
Example: ' 1 width: 1/2

Note that:



1D Haar Wavelets (cont’d)

Interval [0,1).

Note that:

width: 1/2)-1

Example:

V ; represents all the 2)-pixel images
Functions having 2! equal-sized constant pieces over

idth: 1/2)
- width:
ey )
I
e = |

width: 1/2



width; 1/2° width: 1/2 width; 1/22




Define a basis for Wj

« \Wavelet function:

‘ 1 if0<x<1/2
w(x) = ] -1 ifl/2<x<1
0

otherwise

Note new notation: Wij (X) = (X)



Define basis for W; (cont’d)

olt—k) Vo

W2t —k) Wi pl’OdUCt

between basis
functions In Vj
and Wj IS zero!

U‘-“ = .lu‘l V\f"g




Define a basis for W; (cont’d)

oft — kN V3 a4t — k) \Va : ' :

—\ L Bt —k) Wa

w(2t - k) Wi V3 — V2 + W2

U‘-“ = .lu‘l V\f"g




Define a basis for W; (cont’d)

V,=V;, +W,

U‘-“ = .lu‘l V\f"g




Define a basis for W; (cont’d)

V=V, +W,

U‘-“ = .lu‘l V\f"g




Example - Revisited

Resolution Averages Detail Coefficients

[9 7 3 5] I
8 4] 1 -1]
16] 2]

W(2t—k) Wi

V{4t — k) W




Example (cont’d)

olt—k) Vo

wit—-k) Wo

usiny : »(2t—k) Wi

f(x) = o (

U(-l»t = k\l Wa




Example (cont’d)

(divide by 2 for normalization)

using the basis functions in V and W,

£(x) = chpg(x) + cioi (x) + diwg (x) + diyf (%)

Resolution Averages Detail Coefficients




Example (cont’d)

olt—k) Yy

wit—-k) Wo

V(2 —k) W

V4t — k) Wa




Example (cont’d)

(divide by 2 for normalization)

using the basis functions in V, ,W, and W,
V,= VW=V W+ W,

f(x) = inf’n“} + d::!r’fll:[ x) + dn‘r"’h (x) + Url‘af’fl (x)

Resolution Averages Detail Coefficients

19 7 3 5] [
8 4] [1 —1]
6] 2]

scaling function wavelet function
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Example (revisited)

[97 3 5]
low-pass, : /\ high-pass,
down-sampling down-sampling

g o
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(9+7)/2 (3+5)/2  (9-7)/2 (3-5)/2




Example (revisited)

/\.

O 1 -1
low-pass, high-pass, [ ] O
down-sampling down-sampling
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(8+4)/2 (8-4)/2




Convention for Iillustrating
1D Haar wavelet decomposition

X X X X X X .. X X
S B 1
O O oo OO ..0O0 o detail
re-arrange: O O --- O O (HP)
I

re-arrange: O Q.

1




Standard Haar wavelet decomposition

« Steps:

(1) Compute 1D Haar wavelet decomposition of
each row of the original pixel values.

(2) Compute 1D Haar wavelet decomposition of
each column of the row-transformed pixels.



Standard Haar wavelet decomposition

(cont’d)

(1) row-wise Haar decomposition:

XXX
XXX

XXX

=

O 000 ...00
O OO0 00

O 000 ...00

O average
O detail

re-arrange terms

L

OO0 ...000
OO0 00O
OO0 00O




" Standard Haar wavelet decomposition
(cont’d)

(1) row-wise Haar decomposition:

000 ...000
000 00O
000 00O

-

row-transformed result

O
O

O OO
O OO

O OO

O
O

O

average
detail



" Standard Haar wavelet decomposition

(cont’d)
O average
O detail
(2) column-wise Haar decomposition:
row-transformed result column-transformed result
OO0 .. O OO0 .. O
OO0 .. O OO0 ... O

m» . =

OO0 ... O o000 ... O




Example

r})xv-transformed result

\OO ... O

re-arrange terms oloo ... O
900 900 |

000 000 cotwms .

p OO0 ... O




Example (cont’d)

column-transformed result




Standard Haar wavelet decomposition
(cont’d)




What Is the 2D Haar basis for the
standard.decomposition?

To construct the standard 2D Haar wavelet basis, consider
all possible outer products of thelD basis functions.

| I ) (¥)

—1— R
‘:b— Y1,0(X)
—_‘:b‘ vy 1(X)

Example:

V,=V W+ W,




What is the 2D Haar basis for the
standard decomposition?

To construct the standard 2D Haar wavelet basis, consider
all possible outer products of thelD basis functions.

Poo(X), Pgo(X) Woo(X), 0go(X)

Y10(X), @oo(X)

NETE © (X) = 0, () By () =, (X)



What is the 2D Haar basis for the
standard decomposmon’?

Bo() Vo (y) ) W)

3o(X) W) Wo(x) wo(y) Wo(x) W)

Bo(x) Bo(y) Wo(x) 03(y) Wo(x) %m

Notation:

v (X) = Wi (X)




Non-standard Haar wavelet decomposition

Alternates between operations on rows and columns.

(1) Perform one level decomposition in each row (i.e., one
step of horizontal pairwise averaging and differencing).

(2) Perform one level decomposition in each column from
step 1 (i.e., one step of vertical pairwise averaging and
differencing).

(3) Rearrange terms and repeat the process on the quadrant
containing the averages only.




Non-standard Haar wavelet decomposition
(cont’d)

one level, horizontal  gne Jevel, vertical
Haar decomposition:  Haar decomposition:

XXX ... X O OO0 ...00 O O00O...00
XXX ... X O OO0 . OO O OO0 OO
XXX X © 000 OO O OO0 00O

O OO0 00O O OO0 ...00




Non-standard Haar wavelet decomposition

re-arrange terms

00O ... OO
o000 ... OO
OO0 O ... OO
OO0 O - 00O

=

(cont’d)

one level, horizontal
Haar decomposition
on “green’’ quadrant

=

one level, vertical
Haar decomposition
on “green’” quadrant

O OO O

O OO O
» .

O OO O







Example (cont’d)

O OO

O OO

O O




Non-standard Haar wavelet decomposition
(cont’d)




What 1s the 2D Haar basis for the non-
standard decomposition?

e — Eya N —

Notation:

,;l ._ - ) o, ¥) (Dij (X) = (Djl (X)

v (X) = Wi (X)



