
Short Time Fourier Transform (STFT)



Fourier Transform

• Fourier Transform reveals which frequency components 

are present in a function:

where:

(inverse DFT)

(forward DFT)



Examples

)52cos()(1 ttf = 

)252cos()(2 ttf = 

)502cos()(3 ttf = 



Examples (cont’d)

F1(u)

F2(u)

F3(u)



Fourier Analysis – Examples (cont’d)
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Limitations of Fourier Transform

1. Cannot not provide simultaneous time and frequency 

localization.



Fourier Analysis – Examples (cont’d)
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F4(u)
Provides excellent 

localization in the 

frequency domain 

but poor localization 

in the time domain.



Limitations of Fourier Transform (cont’d)

1. Cannot not provide simultaneous time and frequency 

localization.

2. Not very useful for analyzing time-variant, non-

stationary signals.



Stationary vs non-stationary signals

• Stationary signals: 

time-invariant spectra

• Non-stationary 

signals: time-varying 

spectra

)(4 tf

)(5 tf



Stationary vs non-stationary signals (cont’d)

)(4 tf

F4(u)

Stationary signal:

Three frequency 

components,

present at all 

times! 



Stationary vs non-stationary signals (cont’d)

F5(u)

)(5 tf

Non-stationary signal:

Three frequency 

components,

NOT present at 

all times! 



Stationary vs non-stationary signals (cont’d)

Perfect knowledge of what 

frequencies exist, but no 

information about where 

these frequencies are

located in time!

F5(u)

)(5 tf

Non-stationary signal:



Limitations of Fourier Transform (cont’d)

1. Cannot not provide simultaneous time and frequency 

localization.

2. Not very useful for analyzing time-variant, non-

stationary signals.

3. Not appropriate for representing discontinuities or 

sharp corners (i.e., requires a large number of Fourier 

components to represent discontinuities).



Representing discontinuities or sharp corners



Representing discontinuities or sharp corners 

(cont’d)

FT



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

1



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

2



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

7



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

23



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

39



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

63



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

95



Representing discontinuities or sharp corners 

(cont’d)

Reconstructed

Original

127



Short Time Fourier Transform (STFT)

 Segment the signal into narrow time intervals (i.e., narrow 

enough to be considered stationary) and take the FT of each 

segment.

 Each FT provides the spectral information of a separate 

time-slice of the signal, providing simultaneous time and 

frequency information.



STFT - Steps

(1) Choose a window function of finite length

(2) Place the window on top of the signal at t=0

(3) Truncate the signal using this window

(4) Compute the FT of the truncated signal, save results.

(5) Incrementally slide the window to the right 

(6) Go to step 3, until window reaches the end of the signal



STFT - Definition

  2( , ) ( ) ( )u j ut

f

t

STFT t u f t W t t e dt− =  − 

STFT of  f(t):

computed for each 

window centered at t=t’

Time 

parameter

Frequency

parameter
Signal to 

be analyzed

Windowing

function

Centered at t=t’

2D function



Example

f(t)

[0 – 300] ms → 75 Hz sinusoid

[300 – 600] ms → 50 Hz sinusoid 

[600 – 800] ms → 25 Hz sinusoid 

[800 – 1000] ms →10 Hz sinusoid 



Example

W(t)

f(t)

( , )u

fSTFT t u

scaled: t/20



Choosing Window W(t)

• What shape should it have? 

– Rectangular, Gaussian, Elliptic …

• How wide should it be? 

– Window should be narrow enough to ensure that the portion 

of the signal falling within the window is stationary.

– But … very narrow windows do not offer good localization

in the frequency domain.



STFT Window Size

W(t) infinitely long:                   → STFT turns into FT, 

providing excellent frequency localization, but no time localization.

W(t) infinitely short:                        → results in the time 
signal (with a phase factor), providing excellent time localization 
but no frequency localization.
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  2( , ) ( ) ( ) ( )u j ut jut

f

t
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STFT t u f t W t t e dt− =  − 



STFT Window Size (cont’d)

• Wide window → good frequency resolution, poor 

time resolution.

• Narrow window → good time resolution, poor 

frequency resolution.

• Wavelets (later): use multiple window sizes.



Example

different size windows

(four frequencies, non-stationary)



Example (cont’d)

( , )u

fSTFT t u

( , )u

fSTFT t u

scaled: t/20



Example (cont’d)

( , )u

fSTFT t u

( , )u

fSTFT t u

scaled: t/20



Heisenberg (or Uncertainty) Principle

4

1
 ft

Time resolution: How well 

two spikes in time can be 

separated from each other in 

the frequency domain.

Frequency resolution: How 

well two spectral components 

can be separated from each 

other in the time domain

!t and f cannot bemadearbitrarily small 



Heisenberg (or Uncertainty) Principle

• We cannot know the exact time-frequency 

representation of a signal.

• We can only know what interval of  frequencies are 

present in which time intervals.



Wavelets



What is a wavelet?

• A function that “waves” above and below the x-axis with 

the following properties:

– Varying frequency

– Limited duration

– Zero average value

• This is in contrast to sinusoids, used by FT, which have 

infinite duration and constant frequency.
Sinusoid                                  Wavelet 



Types of Wavelets

• There are many different wavelets, for example:

MorletHaar Daubechies



Basis Functions Using Wavelets

• Like sin( ) and cos( ) functions in the Fourier Transform, 

wavelets can define a set of basis functions ψk(t):

• Span of ψk(t): vector space S containing all functions f(t) 

that can be represented by ψk(t).

( ) ( )k k

k

f t a t=



Basis Construction – “Mother” Wavelet

The basis can be constructed by applying translations and

scalings (stretch/compress) on the “mother” wavelet ψ(t):

scale

translate

Example:

ψ(t) 



(dyadic/octave grid)

Basis Construction - Mother Wavelet

j

k

( )  jk t=

scale =1/2j

(1/frequency) 



Continuous Wavelet Transform (CWT)

( )
1

( , )
t

t
C s f t dt

ss


   − 

=  
 



translation parameter 

(measure of time)

scale parameter 

(measure of frequency)

mother wavelet (i.e., 

window function)normalization 

constant

Forward

CWT:

scale =1/2j

(1/frequency) 



Illustrating CWT

1. Take a wavelet and compare it to a section at the start 

of the original signal. 

2. Calculate a number, C, that represents how closely 

correlated the wavelet is with this section of the 

signal. The higher C is, the more the similarity.

( )
1

( , )
t

t
C s f t dt

ss


   − 

=  
 





Illustrating CWT (cont’d)

3. Shift the wavelet to the right and repeat step 2 until you've 

covered the whole signal.

( )
1

( , )
t

t
C s f t dt

ss


   − 

=  
 





Illustrating CWT (cont’d)

4. Scale the wavelet and go to step 1.

5. Repeat steps 1 through 4 for all scales.

( )
1

( , )
t

t
C s f t dt

ss


   − 

=  
 





Visualize CTW Transform

( )
1

( , )
t

t
C s f t dt

ss


   − 

=  
 



• Wavelet analysis produces a time-scale view of the input 

signal or image.



Continuous Wavelet Transform (cont’d)

1
( ) ( , ) ( )

s

t
f t C s d ds

ss 


  

−
=  

Note the double integral!

Inverse CWT:

( )
1

( , )
t

t
C s f t dt

ss


   − 

=  
 

Forward CWT:



Fourier Transform vs Wavelet Transform

weighted by F(u)



Fourier Transform vs Wavelet Transform

weighted by C(τ,s)

1
( ) ( , ) ( )
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t
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
  

−
=  



Properties of Wavelets

• Simultaneous localization in time and scale

- The location of the  wavelet allows to explicitly represent 

the location of  events in time.

- The shape of the wavelet allows to represent different 

detail or resolution.



Properties of Wavelets  (cont’d)

• Sparsity: for functions typically found in practice, many 

of the coefficients in a wavelet representation are either 

zero or very small.

1
( ) ( , ) ( )

s

t
f t C s d ds

ss 


  

−
=  



Properties of Wavelets  (cont’d)

• Adaptability: Can represent functions with discontinuities

or corners more efficiently.

• Linear-time complexity: many wavelet transformations 

can be accomplished in O(N) time.

1
( ) ( , ) ( )

s

t
f t C s d ds
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−
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Discrete Wavelet Transform (DWT)

( ) ( )jk jk

k j

f t a t=

( )/2( ) 2 2   j j

jk t t k = −

(inverse DWT)

(forward DWT)

where

*( ) ( )jkjk

t

a f t t=



Multiresolution Representation Using Wavelets

( ) ( )jk jk

k j

f t a t= 

( )f t

j

fine

details

coarse

details

wider, large translations



( ) ( )jk jk

k j

f t a t= 

( )f t

j

fine

details

coarse

details

Multiresolution Representation Using Wavelets



( ) ( )jk jk

k j

f t a t= 

( )f t

j

fine

details

coarse

details

narrower, small translations

Multiresolution Representation Using Wavelets



high resolution

(more details)

low resolution
(less details)

…

( ) ( )jk jk

k j

f t a t= 

( )f t

1
ˆ ( )f t

2
ˆ ( )f t

ˆ ( )sf t

j

Multiresolution Representation Using Wavelets



Pyramidal Coding - Revisited

Approximation Pyramid 

(with sub-sampling)



Pyramidal Coding - Revisited

Prediction Residual 

Pyramid 

(details)

(details)

reconstruct

(with sub-sampling)

Approximation Pyramid 



Efficient Representation Using “Details”

details D2

L0

details D3

details D1

(without sub-sampling)



Efficient Representation Using Details (cont’d)

representation: L0 D1 D2 D3

A wavelet representation of a function consists of 

(1) a coarse overall approximation 

(2) detail coefficients that  influence the function at various scales

in general: L0 D1 D2 D3…DJ



Reconstruction (synthesis)
H3=H2 & D3

details D2

L0

details D3 H2=H1 & D2

H1=L0 & D1

details D1

(without sub-sampling)



Example - Haar Wavelets

• Suppose we are given a 1D "image" with a resolution 

of 4 pixels:

[9 7 3 5]

• The Haar wavelet transform is the following:

L0 D1 D2 D3

(with sub-sampling)



Example - Haar Wavelets (cont’d)

• Start by averaging and subsampling the pixels 

together (pairwise) to get a new lower resolution 

image:

• To recover the original four pixels from the two 

averaged pixels, store some detail coefficients.

1

[9 7 3 5]



Example - Haar Wavelets (cont’d)

• Repeating this process on the averages (i.e., low 

resolution image) gives the full decomposition:

1

Haar decomposition: 



Example - Haar Wavelets (cont’d)

• The original image can be reconstructed by adding or 

subtracting the detail coefficients from the lower-

resolution representations.

2 1 -1

[6]

L0 D1 D2 D3



Example - Haar Wavelets (cont’d)

Detail coefficients

become smaller and

smaller scale decreases.

Dj

Dj-1

D1L0

How should we

compute the detail

coefficients Dj ?



Multiresolution Conditions

• If a set of functions V can be represented by a weighted 

sum of ψ(2jt - k), then a larger set, including V, can be 

represented by a weighted sum of ψ(2j+1t - k).

low 

resolution

high 

resolution

j
ψ(2jt - k) 

ψ(2j+1t - k)



Multiresolution Conditions (cont’d)

Vj: span of ψ(2jt - k): ( ) ( )j k jk

k

f t a t=

Vj+1: span of ψ(2j+1t - k): 1 ( 1)( ) ( )j k j k

k

f t b t+ +=

1j jV V +



1D Haar Wavelets 

• Haar scaling and wavelet functions:

computes average

(low pass)

computes details

(high pass)

φ(t)                     ψ(t)



Let’s consider the spaces corresponding to 

different resolution 1D images:

1D Haar Wavelets (cont’d)

etc.

.

..

….

1-pixel

2-pixel

4-pixel

(j=0)

(j=1)

(j=2)

V0

V1

V2



1D Haar Wavelets (cont’d) 

• V0  represents the space of 1-pixel (20-pixel) images

• Think of a 1-pixel image as a function that is constant 

over [0,1) 

Example:

0                                                1

width: 1

j=0



1D Haar Wavelets (cont’d) 

• V1 represents the space of all 2-pixel (21-pixel) images 

• Think of a 2-pixel image as a function having 21 equal-

sized constant pieces over the interval [0, 1).

Example:
0                ½              1

0 1V V

= +

width: 1/2

e.g.,

j=1

Note that: 



1D Haar Wavelets (cont’d)

• V j  represents all the 2j-pixel images

• Functions having 2j equal-sized constant pieces over 

interval [0,1).

Vj-1

Example: width: 1/2j

ϵ Vj ϵ Vj

Note that: 

width: 1/2j-1 width: 1/2

V1



Define a basis for Vj (cont’d)

width: 1/20 width: 1/2 width: 1/22 width: 1/23



Define a basis for Wj 

• Wavelet function:

• Let’s define a basis ψ j
i for Wj :

( ) ( )j

i jix x Note new notation:



Define basis for Wj (cont’d)

Note

that the dot

product

between basis

functions in Vj

and Wj is zero!



Define a basis for Wj (cont’d)

V3 = V2 + W2



Define a basis for Wj (cont’d)

V2 = V1 + W1



Define a basis for Wj (cont’d)

V1 = V0 + W0



Example - Revisited

f(x)=

V2



φ2,0(x)

φ2,1(x)

φ2,2(x)

φ2,3(x)

Example (cont’d)

V2

f(x)=



Example (cont’d)

V1 and W1

V2=V1+W1

φ1,0(x)

φ1,1(x)

ψ1,0(x)

ψ1,1(x)

(divide by 2 for normalization)



Example (cont’d)



Example (cont’d)

V2=V1+W1=V0+W0+W1

V0 ,W0 and W1

φ0,0(x)

ψ0,0(x)

ψ1,0 (x)

ψ1,1(x)

(divide by 2 for normalization)



Example



Example (cont’d)



Example (revisited)

[9 7 3 5]
low-pass,

down-sampling
high-pass, 

down-sampling

(9+7)/2    (3+5)/2      (9-7)/2   (3-5)/2

LP HP



Example (revisited)

[9 7 3 5]

high-pass, 

down-sampling

low-pass,

down-sampling

(8+4)/2              (8-4)/2   

LP HP



Convention for illustrating 

1D Haar wavelet decomposition

x      x       x       x      x       x    …   x     x  

detail

(HP)

average

(LP)

…

re-arrange:

re-arrange:

LP HP

…

…

…

…



Standard Haar wavelet decomposition

• Steps:

(1) Compute 1D Haar wavelet decomposition of 

each row of the original pixel values.

(2) Compute 1D Haar wavelet decomposition of 

each column of the row-transformed pixels.



Standard Haar wavelet decomposition 

(cont’d)

x x x      …          x

x x x      …          x

…           …          .

x x x       ...        x

(1) row-wise Haar decomposition:

…

detail

average

…

…            …       .

…

…

…            …       .

re-arrange terms



Standard Haar wavelet decomposition 

(cont’d)

(1) row-wise Haar decomposition:

…

detail

average

…

…

…            …       .
…

row-transformed result

…

…            …       .



Standard Haar wavelet decomposition 

(cont’d)

(2) column-wise Haar decomposition:

…

detail

average

…

…

…            …       .

…

…

…

…            …       .
…

row-transformed result column-transformed result



Example

…

…

…

…            …       .

row-transformed result

…

…            …       .

re-arrange terms



Example (cont’d)

…

…

…

…            …       .

column-transformed result



Standard Haar wavelet decomposition 

(cont’d)



What is the 2D Haar basis for the 

standard decomposition?

To construct the standard 2D Haar wavelet basis, consider 

all possible outer products of the1D basis functions.

φ0,0(x)

ψ0,0(x)

ψ1,0(x)

ψ1,1(x)

V2=V0+W0+W1

Example:



To construct the standard 2D Haar wavelet basis, consider 

all possible outer products of the1D basis functions.

φ00(x), φ00(x) ψ00(x), φ00(x) ψ10(x), φ00(x)

( ) ( )j

i jix x  ( ) ( )j

i jix x 

What is the 2D Haar basis for the 

standard decomposition?

Notation:



( ) ( )j

i jix x 

( ) ( )j

i jix x 

V2

What is the 2D Haar basis for the 

standard decomposition?

Notation:



Non-standard Haar wavelet decomposition

• Alternates between operations on rows and columns.

(1) Perform one level decomposition in each row (i.e., one 
step of horizontal pairwise averaging and differencing).

(2) Perform one level decomposition in each column from 
step 1 (i.e., one step of vertical pairwise averaging and 
differencing).

(3) Rearrange terms and repeat the process on the quadrant 
containing the averages only.



Non-standard Haar wavelet decomposition 

(cont’d)

x x x      …          x

x x x      …          x

…           …          .

x x x       . . .        x

one level, horizontal

Haar decomposition:

…

…

…            …       .

…

…

…

…            …       .

one level, vertical 

Haar decomposition:

…



Non-standard Haar wavelet decomposition 

(cont’d)

one level, horizontal

Haar decomposition

on “green” quadrant

one level, vertical 

Haar decomposition

on “green” quadrant

…

…

…          …       .

…
…

re-arrange terms

…

…

…

…            …       .

…



Example

…

…

…          …       .

…
…

re-arrange terms



Example (cont’d)

…

…

…

…            …       .



Non-standard Haar wavelet decomposition 

(cont’d)



( ) ( )j

i jix x 

( ) ( )j

i jix x 
V2

What is the 2D Haar basis for the non-

standard decomposition?

Notation:


