- •
- •
- •
- •

- •
- •
- •
- •

Short Time Fourier Transform (STFT)

Fourier Transform

• Fourier Transform reveals which frequency components are present in a function:

$$f(x) = \sum_{u=0}^{N-1} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$
 (inverse D)

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-j2\pi ux}{N}}, u = 0, 1, \dots, N-1$$

(forward DFT)

۲

FT)

Examples

$$f_1(t) = \cos(2\pi \cdot 5 \cdot t)$$

$$f_2(t) = \cos(2\pi \cdot 25 \cdot t)$$

$$f_3(t) = \cos(2\pi \cdot 50 \cdot t)$$

Examples (cont'd)

۲

•

Fourier Analysis – Examples (cont'd)

 $f_4(t) = \cos(2\pi \cdot 5 \cdot t) \\ + \cos(2\pi \cdot 25 \cdot t) \\ + \cos(2\pi \cdot 50 \cdot t)$

 $F_4(u)$

Limitations of Fourier Transform

1. Cannot not provide simultaneous time and frequency localization.

 \bullet

Fourier Analysis – Examples (cont'd)

 $f_4(t) = \cos(2\pi \cdot 5 \cdot t) \\ + \cos(2\pi \cdot 25 \cdot t) \\ + \cos(2\pi \cdot 50 \cdot t)$

Provides excellent localization in the frequency domain but poor localization in the time domain.

Limitations of Fourier Transform (cont'd)

1. Cannot not provide simultaneous time and frequency localization.

2. Not very useful for analyzing time-variant, nonstationary signals.

Stationary vs non-stationary signals

 Stationary signals: time-invariant spectra

 $f_4(t)$

• Non-stationary signals: time-varying spectra $f_5(t)$

Stationary vs non-stationary signals (cont'd)

Stationary vs non-stationary signals (cont'd)

Three frequency components, NOT present at all times!

 $F_5(u)$

Stationary vs non-stationary signals (cont'd)

Non-stationary signal:

Perfect knowledge of what frequencies exist, but no information about where these frequencies are 20 located in time! 16

 $F_5(u)$

Limitations of Fourier Transform (cont'd)

1. Cannot not provide simultaneous time and frequency localization.

2. Not very useful for analyzing time-variant, nonstationary signals.

3. Not appropriate for representing discontinuities or sharp corners (i.e., requires a large number of Fourier components to represent discontinuities).

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{\frac{-j2\pi ux}{N}}, u = 0, 1, \dots, N-1$$

•

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 200 100 150 250 300

Reconstructed

$$f(x) = \sum_{u=0}^{1} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 200 100 150 250 300

Reconstructed

$$f(x) = \sum_{u=0}^{2} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 150 200 100 250 300

Reconstructed

$$f(x) = \sum_{u=0}^{7} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 200 250 100 150 300

Reconstructed

$$f(x) = \sum_{u=0}^{23} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 150 200 250 100 300

Reconstructed

$$f(x) = \sum_{u=0}^{39} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 150 200 100 250 300

Reconstructed

$$f(x) = \sum_{u=0}^{63} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 150 200 100 250 300

Reconstructed

$$f(x) = \sum_{u=0}^{95} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Original Grey-level profile 0.4 0.3 0.2 0.1 Ο -0.1 -0.2 -0.3 -0.4 L 50 150 200 100 250 300

Reconstructed

$$f(x) = \sum_{u=0}^{127} F(u)e^{\frac{j2\pi ux}{N}}, x = 0, 1, \dots, N-1$$

Short Time Fourier Transform (STFT)

- Segment the signal into narrow time intervals (i.e., narrow enough to be considered stationary) and take the FT of each segment.
- Each FT provides the spectral information of a separate time-slice of the signal, providing simultaneous time and frequency information.

STFT - Steps

- (1) Choose a window function of finite length
- (2) Place the window on top of the signal at t=0
- (3) Truncate the signal using this window
- (4) Compute the FT of the truncated signal, save results.
- (5) Incrementally slide the window to the right
- (6) Go to step 3, until window reaches the end of the signal

STFT - Definition

Example

 $[0-300] \text{ ms} \rightarrow 75 \text{ Hz sinusoid}$ $[300-600] \text{ ms} \rightarrow 50 \text{ Hz sinusoid}$ $[600-800] \text{ ms} \rightarrow 25 \text{ Hz sinusoid}$ $[800-1000] \text{ ms} \rightarrow 10 \text{ Hz sinusoid}$

f(t)

Example

۲

$$STFT_{f}^{u}(t',u)$$

scaled: t/20

Choosing Window W(t)

- What shape should it have?
 - Rectangular, Gaussian, Elliptic ...
- How wide should it be?
 - Window should be narrow enough to ensure that the portion of the signal falling within the window is stationary.
 - But ... very narrow windows do not offer good localization in the frequency domain.

STFT Window Size

$$STFT_f^u(t',u) = \int_t \left[f(t) \cdot W(t-t') \right] \cdot e^{-j2\pi u t} dt$$

W(t) infinitely long: $W(t) = 1 \rightarrow \text{STFT turns into FT}$, providing excellent frequency localization, but no time localization.

W(t) infinitely short: $W(t) = \delta(t) \rightarrow$ results in the time signal (with a phase factor), providing excellent time localization but no frequency localization.

$$STFT_f^u(t',u) = \int_t \left[f(t) \cdot \delta(t-t') \right] \cdot e^{-j2\pi u t} dt = f(t') \cdot e^{-jut'}$$

STFT Window Size (cont'd)

- Wide window → good frequency resolution, poor time resolution.
- Narrow window → good time resolution, poor frequency resolution.
- Wavelets (later): use multiple window sizes.

Example

•

۲

different size windows

(four frequencies, non-stationary)

Example (cont'd)

 $STFT_{f}^{u}(t',u)$

scaled: t/20

Example (cont'd)

 $STFT_{f}^{u}(t',u)$

scaled: t/20

۲

• • • • •

Heisenberg (or Uncertainty) Principle

 $\Delta t \cdot \Delta f \ge \frac{1}{4\pi}$

Time resolution: How well two spikes in time can be separated from each other in the frequency domain. **Frequency resolution:** How well two spectral components can be separated from each other in the time domain

 Δt and Δf cannot be made arbitrarily small!

Heisenberg (or Uncertainty) Principle

- We cannot know the **exact** time-frequency representation of a signal.
- We can only know what *interval of frequencies* are present in which *time intervals*.
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Wavelets

• • • • • • •

What is a wavelet?

- A function that "waves" above and below the x-axis with the following properties:
 - Varying frequency
 - Limited duration
 - Zero average value
- This is in contrast to sinusoids, used by FT, which have infinite duration and constant frequency.

Sinusoid

Wavelet

Types of Wavelets

• There are many different wavelets, for example:

Basis Functions Using Wavelets

• Like sin() and cos() functions in the Fourier Transform, wavelets can define a set of basis functions $\psi_k(t)$:

$$f(t) = \sum_{k} a_{k} \psi_{k}(t)$$

Span of ψ_k(t): vector space S containing all functions f(t) that can be represented by ψ_k(t).

 \bullet

Basis Construction – "Mother" Wavelet

The basis can be constructed by applying translations and scalings (stretch/compress) on the "mother" wavelet $\psi(t)$:

$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}}\psi(\frac{t-\tau}{s})$$

Basis Construction - Mother Wavelet

• It is convenient to take special values for s and τ in defining the wavelet basis: $s = 2^{-j}$ and $\tau = k \cdot 2^{-j}$ (dyadic/octave grid)

$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}}\psi(\frac{t-\tau}{s}) = \frac{1}{\sqrt{2^{-j}}}\psi\left(\frac{t-k\cdot 2^{-j}}{2^{-j}}\right) = 2^{\frac{j}{2}}\psi(2^{j}t-k) = \psi_{jk}(t)$$

Continuous Wavelet Transform (CWT)

 \bullet

Illustrating CWT

- 1. Take a wavelet and compare it to a section at the start of the original signal.
- 2. Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity.

Signal
Wavelet
$$C = 0.0102$$
$$C(\tau, s) = \frac{1}{\sqrt{s}} \int_{t} f(t) \psi^{*}\left(\frac{t-\tau}{s}\right) dt$$

Illustrating CWT (cont'd)

3. Shift the wavelet to the right and repeat step 2 until you've covered the whole signal.

Illustrating CWT (cont'd)

4. Scale the wavelet and go to step 1.

 \bullet

5. Repeat steps 1 through 4 for all scales.

Visualize CTW Transform

• Wavelet analysis produces a time-scale view of the input signal or image.

$$C(\tau,s) = \frac{1}{\sqrt{s}} \int_{t} f(t) \psi^{*}\left(\frac{t-\tau}{s}\right) dt$$

Continuous Wavelet Transform (cont'd)

Forward CWT:
$$C(\tau, s) = \frac{1}{\sqrt{s}} \int_{t}^{s} f(t) \psi^*\left(\frac{t-\tau}{s}\right) dt$$

Inverse CW

$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau} \int_{s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

 \bullet

Note the double integral!

۲

Fourier Transform vs Wavelet Transform

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{j2\pi u x} du$$

Fourier Transform vs Wavelet Transform

$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

Properties of Wavelets

- Simultaneous localization in time and scale
 - The location of the wavelet allows to explicitly represent the location of events in time.
 - The shape of the wavelet allows to represent different detail or resolution.

Properties of Wavelets (cont'd)

 Sparsity: for functions typically found in practice, many of the coefficients in a wavelet representation are either zero or very small.

$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t - \tau}{s}) d\tau ds$$

Properties of Wavelets (cont'd)

$$f(t) = \frac{1}{\sqrt{s}} \iint_{\tau s} C(\tau, s) \psi(\frac{t-\tau}{s}) d\tau ds$$

- Adaptability: Can represent functions with discontinuities or corners more efficiently.
- Linear-time complexity: many wavelet transformations can be accomplished in O(N) time.

Discrete Wavelet Transform (DWT)

$$a_{jk} = \sum_{t} f(t) \psi^*_{jk}(t)$$

(forward DWT)

$$f(t) = \sum_{k} \sum_{j} a_{jk} \psi_{jk}(t)$$

(inverse DWT)

where

$$\psi_{jk}(t) = 2^{j/2} \psi\left(2^j t - k\right)$$

 \bullet

۲

Pyramidal Coding - Revisited

Approximation Pyramid

(with sub-sampling)

Pyramidal Coding - Revisited

Efficient Representation Using "Details"

Efficient Representation Using Details (cont'd)

۲

representation: $L_0 D_1 D_2 D_3$ in general: $L_0 D_1 D_2 D_3...D_J$

A wavelet representation of a function consists of
(1) a coarse overall approximation
(2) detail coefficients that influence the function at various scales

Reconstruction (synthesis)

Example - Haar Wavelets

• Suppose we are given a 1D "image" with a resolution of 4 pixels:

[9735]

• The Haar wavelet transform is the following:

$$\begin{bmatrix} 6 & 2 & 1 & -1 \end{bmatrix}$$
 (with sub-sampling)

 $L_0 D_1 D_2 D_3$

• Start by averaging and subsampling the pixels together (pairwise) to get a new lower resolution image:

• To recover the original four pixels from the two averaged pixels, store some *detail coefficients*.

1 [9735] []	Resolution	Averages	Detail Coefficients
2 $[8 \ 4]$ $[1 \ -1]$	1 2	[9 7 3 5] [8 4]	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

• Repeating this process on the averages (i.e., low resolution image) gives the full decomposition:

• The original image can be reconstructed by adding or subtracting the detail coefficients from the lower-resolution representations.

$$\begin{bmatrix} 6 & 2 & 1 & -1 \end{bmatrix}$$

$$L_0 D_1 D_2 D_3$$

$$\begin{bmatrix} 6 \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 8 & 4 \end{bmatrix} \xrightarrow{1-1} \begin{bmatrix} 9 & 7 & 3 & 5 \end{bmatrix}$$

۲

۲

Multiresolution Conditions

If a set of functions V can be represented by a weighted sum of ψ(2^jt - k), then a larger set, including V, can be represented by a weighted sum of ψ(2^{j+1}t - k).

Multiresolution Conditions (cont'd)

$$V_{j+1}: \text{ span of } \psi(2^{j+1}t - k): \quad f_{j+1}(t) = \sum_{k} b_k \psi_{(j+1)k}(t)$$

$$V_{j}: \text{ span of } \psi(2^{j}t - k): \quad f_{j}(t) = \sum_{k} a_{k} \psi_{jk}(t)$$

$$\bigvee V_j \subseteq V_{j+1}$$

 \bullet

 \bullet

۲

•

1D Haar Wavelets

 \bullet

• Haar scaling and wavelet functions:

computes average (low pass)

computes details (high pass)

۲

۲

۲

1D Haar Wavelets (cont'd)

Let's consider the spaces corresponding to different resolution 1D images:

۲
1D Haar Wavelets (cont'd)

j=0

- V_0 represents the space of 1-pixel (2⁰-pixel) images
- Think of a 1-pixel image as a function that is constant over [0,1)

1D Haar Wavelets (cont'd)

• V_1 represents the space of all 2-pixel (2¹-pixel) images

j=1

• Think of a 2-pixel image as a function having 2¹ equalsized constant pieces over the interval [0, 1).

1D Haar Wavelets (cont'd)

- V_i represents all the 2^j-pixel images
- Functions having 2^{*j*} equal-sized constant pieces over interval [0,1).

Define a basis for V_i (cont'd)

Define a basis for W_i

• Wavelet function:

$$\psi(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/2 \\ -1 & \text{if } 1/2 \le x < 1 \\ 0 & otherwise \end{cases}$$

• Let's define a basis ψ_i^j for W_i :

$$\psi_i^j(x) := \psi(2^j x - i), \quad i = 0, 1, \dots, 2^j - 1$$

Note new notation: $\psi_i^j(x) \equiv \psi_{ji}(x)$

Define basis for W_i (cont'd)

Note that the dot product between basis functions in V_j and W_j is zero!

Define a basis for W_i (cont'd)

•

۲

•

۲

•

Define a basis for W_i (cont'd)

•

۲

•

 $V_2 = V_1 + W_1$

۲

•

Define a basis for W_i (cont'd)

 $\mathbf{V}_1 = \mathbf{V}_0 + \mathbf{W}_0$

Example - Revisited

Resolution	Averages	Detail Coefficients
4 2 4	[9 7 3 5] [8 4] [6]	[] [1 - 1] [2]

[9 7 3 5]

 V_2

۲

f(x) =

 \bullet

 \bullet

۲

۲

۲

•

•

lacksquare

 \bullet

۲

 \bullet

lacksquare

lacksquare

۲

(divide by 2 for normalization)

using the basis functions in V_1 and W_1				
$V_2 = V_1 + W_1$				
$f(x) = c_0^1 \phi_0^1(x) + c_1^1 \phi_1^1(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$				
Resol	lution	Averages	Detail Coefficients	
	4 2 4	[9 7 3 5] [8 4] [6]	$[1 \\ [2]]{[1]}$	

lacksquare

	(divide by 2 for normalization)
using the basis functions in $ V_0^{} , \! W_0^{} and W_1^{} $	= 6 ×
$V_2 = V_1 + W_1 = V_0 + W_0 + W_1$	$\varphi_{0,0}(\mathbf{x})$
$f(x) = c_0^0 \phi_0^0(x) + d_0^0 \psi_0^0(x) + d_0^1 \psi_0^1(x) + d_1^1 \psi_1^1(x)$	+2× $\psi_{0,0}(\mathbf{x})$
Resolution Averages Detail Coefficients	+1× $\psi_{1,0}(\mathbf{x})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\psi_{1,1}(\mathbf{x})$

$$f(t) = \sum_{k} c_{k} \varphi(t-k) + \sum_{k} \sum_{j} d_{jk} \psi(2^{j}t-k)$$

scaling function wavelet function

Example

۲

•

۲

•

۲

•

Example (revisited)

۲

•

۲

Example (revisited)

Standard Haar wavelet decomposition

• Steps:

(1) Compute 1D Haar wavelet decomposition of each row of the original pixel values.

(2) Compute 1D Haar wavelet decomposition of each column of the row-transformed pixels.

Standard Haar wavelet decomposition (cont'd)

(1) row-wise Haar decomposition:

 \bullet

row-transformed result

average

detail

Standard Haar wavelet decomposition (cont'd)

average detail

(2) column-wise Haar decomposition:

row-transformed result

 \bullet

column-transformed result

Example

transform rows

column-transformed result

transform columns

•

Standard Haar wavelet decomposition (cont'd)

• • • • • • • •

What is the 2D Haar basis for the standard decomposition?

To construct the standard 2D Haar wavelet basis, consider all possible outer products of the1D basis functions.

$$V_2 = V_0 + W_0 + W_1$$

What is the 2D Haar basis for the standard decomposition?

To construct the standard 2D Haar wavelet basis, consider all possible outer products of the1D basis functions.

What is the 2D Haar basis for the standard decomposition?

 $\psi_0^0(x) \ \psi_1^1(y)$

 $\psi_0^0(x) \ \psi_0^1(y)$

 $\psi_0^0(x) \ \psi_0^0(y)$

 $\psi_0^1(x) \ \psi_0^0(y)$

+ $\psi_1^1(x) \ \psi_0^0(y)$

-+-

+

Ŧ

 $\psi_1^1(x) \ \psi_1^1(y)$

Notation:

$$\varphi_i^j(x) \equiv \varphi_{ji}(x)$$

$$\psi_i^j(x) \equiv \psi_{ji}(x)$$

۲

 V_2

Non-standard Haar wavelet decomposition

Alternates between operations on rows and columns.

(1) Perform <u>one level</u> decomposition in each row (i.e., one step of horizontal pairwise averaging and differencing).

(2) Perform <u>one level</u> decomposition in each column from step 1 (i.e., one step of vertical pairwise averaging and differencing).

(3) Rearrange terms and repeat the process on the quadrant containing the <u>averages</u> only.

Non-standard Haar wavelet decomposition (cont'd)

Non-standard Haar wavelet decomposition (cont'd)

re-arrange terms

one level, horizontal Haar decomposition on "green" quadrant one level, vertical Haar decomposition on "green" quadrant

Example

transform columns

transform rows

transform columns

Non-standard Haar wavelet decomposition (cont'd)

 \bullet

• • • • • • •

What is the 2D Haar basis for the nonstandard decomposition?

12

Notation:

$$\varphi_i^j(x) \equiv \varphi_{ji}(x)$$

$$\psi_i^{j}(x) \equiv \psi_{ji}(x)$$

۲