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Abstract

A method for subdividing polygonal complexes and identifying conditions to control their limit
curves is presented. A polygonal complex is a sequence of panels where every two adjacent panels
share one edge only. We formulate this problem and establish a general theory which has a number
of applications in CAGD such as the generation of subdivision surfaces through predefined arbitrary
network of curves. This is a further extension of the capability of these surfaces making them more
attractive and more practical in surface modeling and computer graphics. One of the main advantages
of the proposed scheme is that the regions of the surface between the interpolated curves do not
have to be rectangular—a limitation of existing tensor-product based CAD sysie2080 Elsevier
Science B.V. All rights reserved.

Keywords:Recursive subdivision; Curve interpolation; B-spline; Arbitrary curve netwavksjded
regions

1. Introduction

Recursive subdivision has been receiving extensive attention over the past few years
in free-form surface modeling, multiresolution, and computer graphics (Lounsbery et al.,
1997; Loop and DeRose, 1990; Peters and Nasri, 1997; Kobbelt, 1996; Reif, 1995; Dyn
and Levin, 1990; Halstead et al, 1993; Peters, 1993; Prautzsch, 1995; Subdivision Methods
for Geometric Design, 1995; Zorin et al., 1996). If provides definition of surfaces over
arbitrary topology with many interpolation capabilities, and various robust algorithms for
the interrogation of such surfaces. Recently, it has been used in character animation such
as the short movie Geri's game produced by Pixar (1998). A non-uniform subdivision

1 E-mail: anasri@aub.edu.lb. Supported by a research grant #4813 from the American University of Beirut.
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Fig. 1. A control polygon (hollow vertices) and its first Chaikin’s subdivision (solid vertices).

scheme was also recently suggested by Sederberg et al. (1998). Subdivision schemes are is
continuing to be more and more attractive but further extensions of capabilities still need
to be developed. The proposed scheme of this paper can be used in this direction.
Basically, a recursive subdivision surface is the limit of a subdivision process in which an
initial configurationPy, often referred to as polyhedron, describing a surface is repeatedly
refined. The configuration consists of a set of vertices, edges and faces which need not be
planar. A set of rules is then applied to the configuratfprto generate anothdr; with
more vertices and smaller faces. The process is recursively repeated and at the limit the
configuration converges toG@! surfacesS. The subdivision schemes differ by the rules used
to generate the new vertices. The Doo—Sabin approach (1978), for instance, is an extension
of Chaikin’s method to generate a smooth curve by repeated subdivision of a given control
polygon. In Chaikin’s subdivision of a polygam; having verticegv;)1<;<», €ach edge
e; joining the two vertices;_1 andv; will generate an edgé, called E-edge joining the
ver'[iceSvl.l_1 andvi0 of cpi41 as illustrated in Fig. 1. The/ are given by the following:

3 1
vil_lz é_lvi_1+ Zvi, (1.2)
3 1
v? = Zv,- + Zv,-_l. (1.2)

Note that in order to interpolate the endpointsandv,, the first and last edges, called
end-legsare symmetrically extended abaut andv,, respectively, prior to subdivision.
Furthermore, each vertey, except the endpoints, op; will correspond to an edge, called
V-edge joining the two vertices;? and vl.l see Fig. 1. It was shown that the sequence of
generated polygons will, at the limit, converge to a quadratic B-spline curves (Riesenfeld,
1975).

Based on this curve algorithm, the Doo—Sabin approach generates biquadratic tensor
product B-spline surfaces. In the subdivision process of the polyhé&tirtime new vertices
of P;11 are linear combinations of the vertices®t The following rules apply to generate
the new vertice®;, on a faceF having the verticesv;)1<i<x:

n
j=1
where they;;’s are given by:
n+5
ajij = ———, (1.4)

dn
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Fig. 2. The Doo-Sabin Approach: a polyhedron and its first subdivision (left), and its third
subdivision (right) are shown.

21 (i—j)
3+2cos—,—=

4n

P; .1 is constructed by linking the new vertices and generating three types of faces, as
indicated in Fig. 2. Two types of polyhedra are known: open and closed. In the latter all
vertices are called interior vertices whereas in the former the vertices can be interior or
boundary vertices, as illustrated in Fig 2. For each facef P; an F-face is constructed
from the images of the vertices &t Furthermore, eaamon-boundargdgee, of P;, thatis
an edge with at least one interior vertex, will correspond to an E-face that links the images
of its two endpoints on its two common faces. Finally, for each interior vertet P; a
V-face is made by linking its images on the faces shaking

A cubic approach was also devised by Catmull and Clark (1978) which generate surfaces
that are in generali? except at thérregular points, these are points that correspongd-to
valent @@ # 4) vertices of the surface.

Initially, the techniques were not practical and this has led to various extensions such
as the capabilities of interpolating point, normals, and more recently curves. Several
approaches to interpolate isolated open or closed curves by Recursive subdivision surfaces
was recently devised (Nasri, 1997a, 1997b; Hoppee et al., 1994; Schweitzer, 1996). The
problem can be stated as follows. Given a set of curyadefined by a set of tagged control
polygons ¢p;), on a given polyhedro® describing a surfacg&. The latter can be forced to
interpolate the B-spline curves @fp;). One approach to solve this problem (Nasri, 1997a,
1997b) was to modify the E- and V-faces generated from the edges and vertices of each
control polygorep;, such that their subsequent subdivisions will result in a subdivision of
cp; at the same time. At the limit, the cureg of ¢p; is interpolated by the limit surface
of P. This technique ensuras! continuity across the interpolated quadratic curves. In
(Hoppee et al., 1994), curves are interpolated by modifying the subdivision rules gi%ing
continuity across the interpolated cubic curve which is catledse In general, changing
the rules of subdivision may change the eigenvalues and eigenvectors of the subdivision
matrix and consequently, the limit surface needs to be re-analyzed accordingly.

(1.5)

o=

2A boundary vertex is shared by two boundary edges each of which is common to one face only. Interior vertices
are shared by edges common to two faces.
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One restriction of the approach in (Nasri, 1997a, 1997b) was that the curves interpolated
are isolated and must not intersect, hence a challenging problem of generating a surface
interpolating a mesh of intersecting curves remains unsolved.

In this paper, we propose a method that can solve this problem by using polygonal
complexes. Such a complex is a sequence of panels where each two adjacent ones share
one edge only. We studied the recursive subdivision of these complexes and identified
conditions for controlling their curves. The mathematical theory involved is established
and a number of conceivable applications are outlined. This includes

(1) the interpolation of arbitrary or rectangular meshes of curves by a subdivision

surface,

(2) the insertion of edges along which the limit surface can be trimmed, split or joined

with different level of continuity, and

(3) and the generation of free-form curves by polygonal complexes.

Based on the results obtained, the algorithms in (Nasri, 1997a, 1997b) can be extended to
interpolate arbitrary or rectangular networks of predefined curves where the regions inside
the interpolated curves do not have to be 4-sided—a requirement by tenor product based
CAD systems.

The paper is structured as follows. Section 2 describes the main problems in subdividing
a polygonal complex. Section 3 describes the types of panels used in the construction of
symmetric polygonal complexes whose convergence to curves are discussed in Section 4.
Section 5 outlines some applications of the theory involved where two approaches can
be used to generate subdivision surfaces through a mesh of predefined curves. Finally, in
Section 6 we draw conclusions and further work.

2. Subdivision of polygonal complexes
Let us start by defining what is a polygonal complex.

Definition 1. A polygonal complex is defined as a sequence of polygons or panels
(gi)a<i<n With the property that every two panejs andg ;1 have one edge in common.

If the two panels;; andg, share an edge the complex is annular, otherwise it is a strip
complex.

Fig. 8 shows an example of such a complex.

Recursive subdivision of a polygonal complex consists of applying the subdivision rules
to the panels and the shared edges of the complex but not to the vertices. Consequently,
there are no V-faces generated in the subdivision of a polygonal complex.

The question to be answeredasat is the limit of subdivision of a polygonal comgitex

Let us examine first the case where all panels of the complex are 4-sided. One may
view such a complex as a part of a mesh of a B-spline tensor product surface. Clearly this
mesh converges to its corresponding tensor product B-spine surface where the complex
converges to one parameter line. As for a general polygonal complex, the limit curve
is not in generalG! at the centroid of the:-sided faces but simplg?; the curve is a
collection of quadratic B-spline pieces with more and more pieces generated after each
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Fig. 3. Convergence of non symmetric polygonal complexes. Three successive subdivisions (left) and
the limit curve (right) are shown. Note that! is not achieved at the-sided non symmetric face.

level of subdivision that joins witki’® continuity at the centroid of-sided ¢ # 4) panels.
The reason is that, with more divisions, we observe that

(1) more and more 4-sided panels are generated and

(2) the number of the reflected faces is invariant.

As a result, the quadrilateral case can then be applied almost everywhere. Fig. 3 gives a
counter example showing that! is not achieved in general.

Since the limit curve of a complex is defined regressively, its control polygon is not
known in general. However, if the panels of the complex enjoys some symmetry, the control
polygons can be defined and hence its limit curve is predictable.

3. Symmetric polygonal complexes

In this section we identify types of panels that can be used in constructing symmetric
polygonal complexes whose having predictable limit curves can be predictable. We define
two types of panels that can be used in a polygonal complex: single and double reflected
panels.

Definition 2. Given a segmeritA B]. The set
CH(A,B)={ciii=12,...,k}

of Chebychev points opA D] is given by:
oo AEAA+A+B)B

1 2 ’ (31)
where the valueg; are given by
2i—-n
COS=~"
= 7§f 3.2)
CoS7;

Observe thatl = ¢1 andB = ¢i; they are called Chaikin end-points.
Letn be even, and lef be arm-sided face. Write: = 2m. The set of verticesv; ) 1<i <im
of f are calledoriginal vertices and the rest ameflectedvertices. Furthermore, two

3 An analytic proof for this is possible but not too instructive (Reif, 1996).
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Fig. 4. Two main types of panels in a symmetric polygonal complex: Single panel (left) and
double-reflected (right). Original vertices are shown in solid circles, reflected in hollow circles,
Chebychev points in hollow squares, and the centroids in shaded squares.

verticesy; andv; of ann-sided . is even, face are callemppositevertices, ifi + j =n+1.
See Fig. 4.

Definition 3. Let n be evenn = 2n. An n-sided facef is called single-reflected about
a segment if:
(1) The vertices of are the midpointsv; and w,, of the edgesiiv, and vy, v,1,
respectively.
(2) Every two opposite verticesy;, v,4+1—;) are symmetric about the corresponding
Chebychev point; € Cb™ (w1, wy,).

The segment is called amid-segmenof f and joins the two Chebychev end-points
andcy. The edges,,v,,+1 andvy, v1 are calleccontactedges?

Consider am-sided facef of vertices (vi)1<i<n, Wheren = 4m, and let G be its
centroid. Let(w;)1<i<4 be the midpoints of the edges,, v1, v2,uv2m+1, VmVms+1 and
v3mV3m+1, respectively. These edges will be referred tocastactedges. Furthermore,
two contact edges are callegpositef their midpoints are collinear with the centrod,
otherwise they called adjacent.

Definition 4. An n-sided, n = 4m, face f is called double-reflected about the two
segmentsiws andwowy defined as above if is single-reflected about; wz andwowa.

The two segments 1w, andwsw, are called the mid-segments ffand they intersect
atG. The vertices of the set®;)1<; <, form the set of original vertices of and the rest
are called reflected vertices. Fig. 4 shows an example of such a face where the contact
edgesvivio, vev7 are opposite edges amgv1 2, vavg are adjacent.

4 These will be edges that can be shared with other panels as explained later.



A. Nasri / Computer Aided Geometric Design 17 (2000) 595-619 601

It should be noted that a single-reflected face is a special case of a double-reflected case
where both of its mid-segments are collinear but each face plays a different role in terms
of the limit curve of a complex.

Definition 5. A symmetric polygonal complex is a polygonal complex whose panels are
either single- or double-reflected and whose shared edges are only contact edges.

In the sequel we drop the term symmetric and assume (unless otherwise stated), that all
polygonal complexes are symmetric. Tinél-polygorof such a complex is the piecewise
polygon whose vertices are the mid-points of the shared edges. If the two shared edges of

Fig. 5. Various symmetric polygonal complexes and their mid-polygons: Starting from top: a strip
whose panels are all single-reflected, a strip with double-reflected end-panels, a general form of a
strip complex, an annular complex with single-reflected panels (left), and an annular complex with
one double-reflected (right) are shown with original vertices (solid circles), reflected vertices (hollow
circles), and mid-polygons vertices (solid squares).
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a double-reflected panels are not opposite than its centroid is a common end-point of two
pieces of the mid-polygon. In the case of a strip complex, the centroids of the end-panels
are the end-points of the mid-polygon.

Fig. 5 give examples of various types of symmetric complexes and their corresponding
mid-polygons.

4. Convergence of symmetric polygonal complexes

We begin by showing that a single or a double-reflected panel remains invariant under
Doo-Sabin subdivision.

Lemma 1. Let f; be a single-reflected face amgbe its mid-face segment. The F-face of
f; is also single-reflected and its mid-face segment is the E-edge of

Proof. We need to show that the midpoints andc,, of the subdivided contact edges
are Chaikin end-points of the edge and the subdivided vertices are symmetric about
the Chebychev points of the E-edgeefas depicted in Fig. 6. See Appendix A for the
proof. O

Since a double-reflected panel can be thought of as single-reflected about its two mid-
segment, one can easily conclude the following:

Lemma 2. If aface f; is a double-reflected about its mid-face segmeantss and wawy,
then its F-face is also double-reflected about the E-edges o andwowa, respectively.

Proof. f; is a single-reflected about each of its mid-face segments. Using Lemma |, its
F-face will also be single-reflected about the E-edges of these segments, hence it is double-
reflected about them. O

Fig. 6. Invariance of a single reflected panel under subdivision. The Chebychev goiritthe
original (solid squares) and thogeof the subdivided face (hollow squares) are shown.
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Fig. 7. Invariance of a symmetric polygonal complex under Doo—Sabin: Annular case (top), strip
case (bottom).

Applying these lemmas to a symmetric complex yields the following:

Lemma 3. Let S be a symmetric polygonal complex amtibe its mid-polygon. Lef be
one step of D/(\)o—Sabin subdivision®fThensS is a symmetric polygonal complex and its
mid-polygonM is the Chaikin subdivision a¥/.

Proof. Let us take the case whefds annular. Each facﬁ of Sis either (1) an F-face of a
face f; of S, or (2) an E-face of an edgg of S (see Fig. 7). In the first casg, is symmetric
and its mid-segments is the E-edge of thafefa direct result of Lemma 1. Since the E-
faces are symmetric thehis also symmetric. The mid-segment of an E-face will join the
mid-points of its two shared edges, which are Chaikin endpoimamlﬁereforel?[ is the
Chaikin subdivision of\/. The strip case can be handled in an analogue manier.

The above results leads to the following essential theorem.
Theorem 1. Let Qg be a strip complex, anfify be its mid-polygon. Denote ¥y the ki
subdivision ofQq then
lim QO =c,
k— 00

wherec is the piecewise quadratic B-spline curvel which interpolates the centroid of
each panel oDg with C* continuity if its two contact edges are opposite and wifhonly
if they are adjacent.
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Proof. Let M; be theith Chaikin subdivision of/g. We have

I|m M; =c,

1—> 00
wherec is the corresponding quadratic B-spline curve. To begin with, consider first a single
complexwhere all panels are single reflected. This means that there is a 1-I correspondence
between the points of the mid-polygon &fand the points of each of the outer polygons
P! and p? whose sets of vertices are, respectivélyandV,—the sets of the original and
reflected vertices. Accordingly, for a parameter valueie can defineSj(u) and S; (u)
to be the corresponding points @fi and p!, respectively. We have to prove that for any
¢ > 0, there existg such thalﬂS;?(u) —cu)|| <e¢ and||S}?(u) —c()| < ¢ forall u.

Denote bydl.j the diameter of a panq[i of Q; and by
|| = max(dy). (4.)
Since the second largest eigenvalues of the subdivision mat&x,/2 (Doo and Sabin,
1978), we have:
Idill _ do
2 2t
Given ane > 0, the convergence @ff; ensures that there existg@such that
HMj(u) — c(u)” <e

lditall = (4.2)

for all j > jo and allu. Using Lemma 1, for each/;, there exists a subdivided complex
S; whose mid-polygonig/;. In addition,M ; (1) must belong to a leg;, of M;, which is
also a mid-segment of a certain pagglof S;. On this panel,

570 = e[ < || 870 = M) |+ M; @) — e
which gives:

’

d
8760 = et < 55 +e.

One may then choosgsuch that
do

— < é&
2j
and hence
|| SP(u) — c(u) || < 2s.

The other inequality can be similarly deduced which completes the proof in the case of a
strip with single-reflected panels only. As for the general case where a strip may include
double-reflected panels, two cases are considered depending on whether the contact edges
of this panel are opposite or adjacent. In the case of opposite contact edges, the 1-1
correspondence is maintained and the centroid is interpolated@itbontinuity since

the panel is single-reflected about the corresponding mid-segment. Otherwise, the limit
curve will pass through the centroid and will be tangential to the two mid-segmemtd

e>. Sinceey ande; are not collinearC?! is not achieved and the curve@® only. O
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Fig. 8. Convergence of polygonal complexes. Each complex is shown with two successive
subdivision and its limit curve. The top three complexes illustrate various strip cases and the bottom
two depict annular cases.

Fig. 8 shows the limit curves of various shapes of polygonal complexes. Based on this
theorem the following corollary can be devised:

Corollary 1. Let (Q)1<igm bem (m < 4) symmetric complexes sharing one double-
reflected panepo. Then, the complexes converge to m corresponding CUeVeS; <m
meeting at the centroid gfp such that every couple;, c¢;) meets withC! continuity if the
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contact edges of; and Q ; are opposite, and witle® continuity only if the contact edges
are adjacent.

Proof. Consider the case af = 4 first. Letg;, wiws andwaw, be the centroid, and the
two mid-segments opo, respectively. Denote bg;; the piecewise strip made @f; and
Q; and byc;; its piecewise curve which is made gf, andc;. Clearly, po, being single
reflected abouiv1ws andwowg, can be considered as a single panel of the gkip and
024. These strips will converge to two curveg andcy4, respectively, and both of them
pass through; with C1 continuity. On the other hand, sineeiws and wows are not

Fig. 9. Convergence of polygonal complexes sharing one double-reflected panel. From top: two
complexes giving two limit curves witle? joint, two complexes giving two limit curves witt'!

joint, three complexes giving three limit curves, and four complexes giving four limit curves. In all
figures, complexes and mid-polygons arc shown on left, their third subdivisions and limit curves are
shown on right.
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collinear, the stripg 23 and Q14 converge to two piecewise curves andcy4. The curve
23 is made ofco andcz whose tangents at are not collinear, thu€© continuity is only
achieved.

Form < 4, one can assume the existence of one or two more complexes(s) sh@ring
and then apply the 4 complexes case which completes the proof.

The following situations are then possible:

(1) Two complexes can share a double-reflected panel. If the two contact edges with
are opposite, the two limit curves a€& at the centroid ofpg, otherwise they are
only €° as depicted in Fig. 9.

(2) Three complexes may share a double-reflected panel. Two of the three contact edges
must be opposite and hence two of the limit curves meet @ittout the third with
€9 only as shown in Fig. 9.

(3) Finally, four complexes can share a double-reflected panel. The complexes sharing
this panel with opposite contact edges will have their limit curves meeting@ith
and those sharing it with adjacent contact edges @htas shown in Fig. 9.

5. Applications

There are a number of conceivable applications of the proposed method. The following
sections discuss some of them.

5.1. Curve interpolation

One important application of the proposed method is the generation of a subdivision
surface through a set of arbitrary meshes of predefined curves. The problem can be stated
as follows:

Given a polyhedral networR and a set of tagged control polygotrp;)1<i<,,» how to
force the limit surface generated fromto interpolate the B-spline curvés;) of (cp;).

One major issue to solve such a problem is how to define these curves. Two approaches
can be used: theolygonalapproach and thEomplex approach

5.1.1. The polygonal approach

One approach is to start with an initial polyhedral netwé@gkand define the curves
by some tagged control polygons whose vertices and edges are chosen from those of
Po. The curve interpolation problem can then be solved by usipglygonal approach
which can be regarded as an extension of the method suggested in (Nasri, 1995, 1997a,
1997b). Basically, the idea consists of constructing polygonal complexes, one for each
curve, by modifying some panels of the initial polyhedron or its first subdivision depending
on whether the curve to be interpolated is a boundary or an interior one. Fig. 10 shows
a polyhedron and a tagged control polygon. The limit surface with and without curve
interpolation is shown. Initially the method suggested in (Nasri, 1997a, 1997b) could not
handle intersecting curves but the use of polygonal complexes as proposed in this paper
makes it achievable. This is to be further investigated.
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Fig. 10. Left column from top: A configuration with a tagged control polygon and its first
subdivision before and after strip construction. Right column from top: the limit surface without
curve interpolation, and two views of the surface with curve interpolation.
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Fig. 11. Interpolating intersecting curves: A surface network containing four strip complexes and
their mid-polygons (top left), the limit curves and their polygons (top right), two views of the
corresponding limit surface (middle), another surface network containing two strip complexes (one

boundary and one interior) and their mid-polygons (bottom left), and the corresponding limit surface
(bottom right).

5.1.2. The complex approach

A different approach to interpolating curves by subdivision surfaces consists of using
the complex approachas follows. First, the interpolated curves should be designed by
polygonal complexes whose mid-polygons control the shape of these curves. To do this,
the user simply sketches out the control polygons of the curves to be interpolated. Next, a
panelp;, one for each leg of the control polygons, is designed such that the mid-segment
of p; isl;. For this the user has to choose the position and the numbeigaial vertices of
pi. The reflected vertices needed to complete the panel are constructed automatically. Note
that the vertices of the panels (whether original or reflected) of the complexes can be moved
around with the only constraint that they remain symmetric about their corresponding
Chebychev points. However in some cases the polygonal complexes may not alone make a
polyhedral network for a limit surface because of the possible existence of 2-valent vertices
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Fig. 12. Interpolating curves which correspond to different types of polygonal complexes: Initial
mesh indicating strips and their mid-polygons (left), and the corresponding surface with the
interpolated curves (right) are shown.

of certain double-reflected panels. Such vertices are not allowed in the definition of a
polyhedron where all vertices must bevalent withn > 2. To modify their valences, the

user will have to complete the polyhedron by interactively filling in some vertices inside the
regions enclosed by the complexes. This is a design process which is basically similar to
designing a polyhedral network for a subdivision surface. Essentially, the vertices needed
inside the regions can be sparse and just enough to increase the valence of the 2-valent
vertices. One solution that could be used as a default construction in an interactive design
system consists of the following:

(1) Compute araveragevertex from the centroids of all panels bounding a region

between interpolated curves.

(2) Insert the average vertex in the set of vertices of the constructed polyhedron.

(3) Connect all 2-valent vertices bounding the region to the average vertex.

(4) Insert their corresponding faces in the topology of the polyhedron defining the limit

surface.

Note that additional vertices can be inserted in the regions but there must be reasons
for doing so such as controlling the shape of the surface inside those regions and it is
eventually a designer decision.

Having done that, theorem 1 guarantees that the limit surface of the constructed
polyhedron will interpolate the limit curves of the complexes. Thus, if the network contains
initially, two complexes sharing a double-reflected panel, two curves meeting at an interior
point can be interpolated by the limit surface. With three complexes, an interior curve
can intersect a boundary one where the contact point is natuf&llgnly. With four
complexes, four intersecting curves can be interpolated. Figs. 11 and 12 provide examples
of interpolating intersecting curves using this approach.

5.1.3. Interpolating surfaces
Using the approaches suggested above, recursive subdivision surfaces through rectan-
gular or arbitrary networks of curves wherén < 4) curves may meet can be generated.
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Fig. 13. A tap surface interpolating an arbitrary mesh of curves with varesisled (n = 3,4, 5)
regions. Left column from top: A mesh of given curves and two views of the polygonal complexes
defining these curves. Right column from top: A network incorporating these complexes and two
views of the corresponding limit surface interpolating the given curves.
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Fig. 14. A surface interpolating a mesh of curve with a 6-sided region enclosed by these curves:
A polyhedron with polygonal complexes (top) and limit surface interpolating the predefined curves
(bottom).

Fig. 12 shows a network with various polygonal complexes (top right) and its limit surface
passing through the corresponding network of arbitrary curves.

Compared to the tensor-product based CAD systems, the scheme has the advantage of
incorporating:-sided regions between interpolated curves as depicted in Fig. 13 where 3-,
4-, 5-sided regions are shown. Fig. 14 shows also an example of a 6-sided region between
interpolated curves.
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As for the quality of the resulting interpolating surfaces, they are smooth surfaces, being
limits of a subdivision process. They lie within the convex hulls of their modified or initial
networks.

One advantage of theomplexapproach which is used to produce the above figures is
that the user has control on the shape of the polygonal complexes defining the interpolated
curves. This is possible since they are originally included in the defining network. The
shape of the surface across the interpolated curves can be controlled by interactively
modifying the position of the vertices of the panels around the their corresponding
Chebychev points. Furthermore, the artifact shown in the surfaces of Figs. 11 and 12
along the boundary can be eliminated by a process of boundary modification as suggested
in (Nasri, 1987). This was not considered here to clearly show how the complexes are
converging to their corresponding curves.

5.2. Edge insertion and trimming

The limit curve of a polygonal complex can be regarded as an edge inserted on the
surface as used in (Habib, 1996). Such an edge is a feature line or a shape handle along
which a surface can be trimmed or split as indicated in Fig. 15. Continuity across an
inserted edge can be controlled. For example two polyhedra can be joined along a specific
edge withC? if they both share the same polygonal complex. Twisting the panels of these
complexes along their mid-segments can reduce the joiiPto

5.3. Curve generation

One further application that is worth pursuing is the generation of free-form curves
by polygonal complexes. This has several advantages such as incorporating curves in the
network of a given surface. The panels of the corresponding complex can be used to define
tangent planes along this curve. Further research is still needed to establish similar results
to the control-polygon case such as parameterization of a limit curve, degree elevation,
curvature, and other geometric properties.

6. Conclusions and further work

In this paper, we have presented a method for subdividing polygonal complexes and
identified conditions on their panels to control their limit curves—a property not possible
for a general complex. The general theory established has a number of applications in
CAGD amongst which are the curve interpolation by the limit surface, edge insertion and
trimming, and free-form curve generation.

In curve interpolation, the scheme is capable of generating surfaces through prede-
fined rectangular meshes or arbitrary networks of curves. This feature makes the whole
subdivision scheme more attractive and more practical in surface modeling and computer
graphics. Furthermore, the scheme has the advantage of generataeg, where is not
necessarily 4, regions enclosed by the limit curves—a limitation of most tensor-product
based CAD systems. Each interpolated curve can play the role of a feature line on the limit
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Fig. 15. Left: Color shaded pictures of the surfaces in Fig. 12 interpolating intersecting curves on
the interior (top and middle) and on the boundary Fig. 11. Right: Trimming of a subdivision surface
along interpolated curves. Surface of Fig. 12 (top) trimmed along the interior closed curve (middle),
and then split into 3 pieces (bottom).
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surface as an inserted edge along which the surface can be split, timmed or joined with
another with various level of continuity.

One limitation of the proposed scheme is that no more than four curves are allowed to
intersect at an interior point of the surface. Such a limitation is the subject of a subsequent
paper. Designing shape handles that control the shape of the surface across an interpolated
curve and the generation of free-form curves by polygonal complexes are also subjects for
further work in this direction. Finally, although Doo—Sabin scheme was mainly used in the
proposed method, the extension to higher order subdivision surfaces can be inspired. This
is also currently under investigation.
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Appendix A

Proof of Lemma 1. The verticegw;) of the F-face off; are given by:

wi v;

wj Vi

W — M x Um

Wm+1 Um+1 ’
Wn—2i+1 Un—2i+1
L w, L v,

whereM is given by:

@Q : ai—1 : A Um+1 : Um—1 : al
®i-1 - Op-2i+1 - Op-1 Op—i+l - o0 : o
M= Am-1 - Am—i : (&10] a1 © Um—i+l - Oy
Am © Om—it+l o1 @0 : O —ij : al
ai - ap © Opoitl Qi Qp2i4l O]
L o1 . o : Um—1 Um . i1 : oo
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Here we are assuming that=n/2 andi > m/2. Other cases can be easily inspired.
Let c1 andc,, be the midpoints of;v,, andv,,v,,+1, andcy, ¢, be the midpoints ofv1w,
andw,, w,_1, respectively. We have to prove two things:

(1) that E-edge of the mid-segment;, iscic,, and,

(2) that the(w;) are symmetric with respect to the Chebychev poiats defined on

c1¢, (see Fig. 6).
We have to prove that; andw,_»;+1 are symmetric abo@} which is given by

m—i i—-1
G=Y alit+aip1+ Y cx@ik+an it
k=1 k=m—i—1

m
+ Z cr(ag_1+ op_i_ga1).
k=1

Using the following identities

‘ 1 JG—=j)  wi+])
a’+a’_8_m(6+4co“' - cos - , (A.1)
1 ri—j) 1
al+ao_8—m(6+400§ o +Z>’ (A.2)
we get
1
Uik +jyp—1= 8—[6+ 4 cog2k — 1)x coq2i — 1)x],
1 1
Aj—f+op—jfr1 = — [64— 4cosn — 2k — Dxcodn —2i — D)x + —],
8m 4
1
Op—i Fp_i—k+1= 8—[6+ 4cogn — 2i —1)xcodn — 2k — l)x]. (A.3)
n
With x = 7 /2m and co$n — 2k — 1)x = cog2k — 1), ¢; can be written as
+ Z[ (6+4cog2k — 1) cog2i — l)x)i| (A.4)
cog2i
S + —ch S( - ch cos2k — 1)x. (A.5)
Using the foIIowmg equat|0ns
m
> B=0. (A.6)
+
Ck+ Cmti1 = — 5 o (A7)
we have
m m
> a= S (c1tem). (A.8)

k=1
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The other summation can be computed as follows. Using the following identities
cos2(m — k + 1) — 1)x = — c0S2k — D)xcr — cm—i+1 = (c1 — cm) B,

we compute

2% "crcos2k—1)

k=1
as
> [excos2k — Dx + crp1c0820m — k + 1) — 1)x] (A.9)
k=1
=Y (ck — cm—k41) COS2k — Dx (A.10)
k=1
= (c1—cm) Y _ BrcOsS2k — D)x. (A.11)

k=1
Replacinggy by its value, the above equation is given by

(c1—cm) “
R cog(2k — 1)x. A.12
p— ; (2k — 1)x (A.12)
Putting cod(2k — 1)x as
1
coS(2k — 1)x = E(l +c0os 22k — 1)x) (A.13)
we get
> co$(2k — Hx ==+ =) "cosA2 — Dx. (A.14)
m 2
k=1 k=1
But as
2k—1 2k . 2km .
c0sd2k — 1x = cos( i = CO0S il Cosz + sm—n sin z,
m m m m m
we have
m m m
2k . . 2k
> cosA2k — 1)x = cos™ > cos™ 2 4 sinZ $ sin 2L (A.15)
k=1 ) mn =1 n

Using the two identities

“ sine 1
> cosak = sin; sin(mz )a, (A.16)
j=1 2
“ sin e 1
> sinak = sin; cos(m; )a, (A.17)
2
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it is easy to show that

m

2k
cos—Z —o, (A.18)
m
k=1
- 2k
sin=Z —o. (A.19)
m
k=1
Therefore

> c0s22k — 1)x =0,

k=1
and hence
m m
> oS (2k — 1x = >
k=1

replacing this in above, we get

m
mc1—cCy

2;% COS2k — D =5 = . (A.20)
Finally,

G=g+ g(Cl o)+ ol _80’”)/3’ . (A.21)
Using Bn+1—i = —Bi, itis easy to show that this yields

%Ci + %Cm—i-i-l (A.22)
and thus the; are affine maps of the .

This gives
3 1 1 3
c1= ch + Zcmcm = ch + Zcm,

and thuscy andc,, are the Chaikin end-points anc,, and henc& ¢,, is the E-edge of
c1cm- Therefore th&; are affine maps of the , which completes the proof.o
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