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Abstract. Intersection of spatial curves became general problem in the sphere of geometric 
modeling and computational geometry. To find a set of points of the curve/curve intersection 
could be performed by several algorithmic techniques. At the present time there exist several 
different approaches to this problem but the endeavor is to avoid difficulties in calculation 
which are mainly results of polynomial representation higher degree curves. We stay indeed 
at the original polynomial approach, e.g. Bézier clipping method, established by Nishita et al. 
in [1990]. Presented paper describes the mathematical background of this method that solves 
existing problem of two curves intersection on class plane Bézier curves only. 
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1 INTRODUCTION 
Raytracing has become a popular method for generating and rendering high quality im-

ages and movies. The basic requirement for ray tracing is the computation of intersection be-
tween rays and object. As a simple and powerful technique resolving the problem of intersec-
tion was proposed Bézier clipping method, originally presented by Nishita et al. 1990.  

In this paper we discuss display method by using Bézier clipping, see some of many refer-
ences [Efr05], [Kud06], [Nis98], [Pal06], … 

1.1 Outline 
The content of this paper is organized as follows. Section 2 presents basic ideas be-

hind the most commonly used method in technical-geometrical practice, i.e. Mongean 
Method. Section 3 deals some of basic theorems of Monge projection with and a corollary 
is derived. Bézier clipping method originally presented by Nishita et al. [1990] is de-
scribed in Section 4. Section 5 opens problem of space nonrational Bézier curves intersec-
tion in a touch with Monge projection. Conclusions and future work are presented in Sec-
tion 6. 

2 MONGE PROJECTION 
In the field of descriptive geometry became Mongean method the most commonly used 

projection in technical-geometrical practice [Cen59], [Lor33], [Pal04]. We remind that the 
Monge projection is a double orthogonal projection upon a pair of perpendicular planes which 
intersect in a line (Fig. 1). 
Theorem. To a general point P of space E3 there belongs, in the drawing plane, a pair of 
points P1, P2, which two points lie on the same perpendicular to the ground line; and, con-
versely, to a pair of points so related there is but one point in space E3, namely that to which 
this pair belongs. 
Definition. The Mongean Method of Representation possesses the property of unambiguous 
correspondence. 
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Let 1 3 2: =ϕ π→E E  a b2 3 2: =ϕ υ→E E  be the orthogonal projection upon a plane of pro-

jection π (first plane of projection) a b(second plane of projection)υ . The point ( )1ϕ =X  

[ ]1 ,x y= =X  ( ) [ ]2 2 ,x zϕ = =X Xce fh  is the orthogonal projection of the point [ ], ,x y z= ∈X  

 upon the plane of projection π3∈E a bυ . 

Let 3 2 2
1 2 :ϕ ϕ ϕ π υ ε= × → × = × =E E E  be the Monge projection and points X1, X2 are 

the orthogonal projections upon plane of projection π and υ respectively. After the forming a 
union of planes of projection 0π  (plane π is turned around the axis x1,2 about 90° to the posi-
tion when half-plane π +  coincide with half-plane υ− and half-plane _π  coincide with half-
plane υ+ , see Fig.1) and υ  into the drawing plane ε, the coordinates of ( )ϕ ε∈X  will be as 
follows:  

( ) ( ) ( ) ( )( ) ( ) [ ]0
1 2 2: , x y z, ,ϕ ϕ ϕ ϕ ψ ϕ ϕ⎡ ⎤→ = = × = ∈⎡ ⎤⎣ ⎦⎣ ⎦X X X X X XD ε , (1) 

where :ψ π →υ  is the above rotation and the coordinates of ( )ϕ X  are using as in Fig. 1. For 
more details see e.g. [Lor33], [Kra91], [Pal04]. 
 
 
 

  
Figure 1. Union of planes of projection to form 

a drawing plane. 
 
 
 

                       Figure 2. PT Algorithm. 
        (a) Original. (b) After first clipping. 

3 BÉZIER CURVES AND MONGE PROJECTION 

The Monge projection is a projection of the Euclidean space E3 upon the drawing plane ε. 
A Bézier curve P(u) of degree n is defined of the parameter domain ,a b  is represented in 
2D(x,y) coordinate space by equation  

( ) ( ) ( ) ( )0 0 0
,n n nn n

i i i i i ii i i
u B u x B u y B

= = =
n u⎡ ⎤= = ⎣ ⎦∑ ∑ ∑P V ,   (2) 

and in 3D(x,y,z) coordinate space 
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( ) ( ) ( ) ( ) ( )0 0 0 0
, ,n n n nn n n

i i i i i i i ii i i i
u B u x B u y B u z B

= = = =
n u⎡ ⎤= = ⎣ ⎦∑ ∑ ∑ ∑P V ,  (3) 

where , a u b≤ ≤ { },  0,1,...,i i∈V n  are the control points, and ( )n
iB u  are the Bernstein poly-

nomials, see e.g. [Far93], [Kud04], [Pal07]. 
From the above conditions we get a derivation for spatial Bézier curves in the Monge projec-
tion (for drawing plane ε). 
Theorem. Let 3 2: 2ϕ → ×E E E  be the Monge projection. Then  

, 

( ) ( )1 0
,n n

i ii
u x B

=
⎡= ⎣∑P u

( )0

n n
i ii

y B u
=

⎤
⎦∑ ,u a b∈ , ( ) ( ) ( )2 0 0

,n nn n
i i i ii i

u x B u z B u
= =

⎡ ⎤= ⎣ ⎦∑ ∑P ,u a b∈,  are the or-

thogonal projections of the curve P(u) of the form (3) upon the planes of projections π and υ 
respectively and according to (1) we make a pre-arrangement 

 ( )( ) ( ) ( ) ( )0 0 0
, ,n n nn n n

i i i i i ii i i
u x B u y B u z B uϕ ε

= = =
⎡ ⎤= ∈⎣ ⎦∑ ∑ ∑P , ,u a b∈ . (4) 

4 ORIGINAL BÉZIER CLIPPING METHOD 
The original Bézier clipping method was presented by Nishita et al. [1990]. This part ex-

plains the ideas of this method, e.g. how to determine and compute the intersection of two 
planar Bézier curves in the rendering process [Nis98]. To process this, first we have to realize 
some pre-computations. We present two algorithms, Polynomial – t parametric Axis Algo-
rithm (PT Algorithm) and Curve – Line Algorithm (CL Algorithm) respectively. Bézier clip-
ping in the context of plane curves intersection in this paper is an interactive method which 
takes advantages of the Convex Hull of Bézier curves and the Variation Diminishing Prop-
erty. The detailed explanation is necessary to better understanding the process in E3 for find-
ing curve/curve intersection using Monge projection [Cen59], [Lor33]. 

4.1 Preliminary consideration 

Convex Hull Property (CHP): for all 0,1t∈ , P(u) { }0 1, ,  ... , n∈ V V V . It means that 
every point of a Bézier curve is enclosed by the convex hull of its defining control points.  
Variation Diminishing Property (VDP): for a planar Bézier curve P(u), the VDP states 
that the number of intersections of a given line with P(u) is less than or equal to the num-
ber of intersections of the line with control polygon V0V1 … Vn. 
Distance Function. Suppose the line ℓ in the plane E2 has the equation: 

ℓ: ax + by + c = 0,  a2 + b2 = 1    (5) 

with a unit normal vector. The signed distance from any point (x, y) to the line ℓ is ex-
pressed by 

( ) 2 2, ax by cd x y ax by c
a b
+ +

= = + +
+

    (6) 

By substituting the point on the Bézier curve (2) into (6) we get 

( ) ( ) ( ) ( ) ( )0 0 0 0

n n n nn x n y n n
i i i i i ii i i i

d u a B u v b B u v c B u B u d
= = = =

= + + = i∑ ∑ ∑ ∑ ,    (7) 

 



 
PROCEEDINGS  OF  SYMPOSIUM  ON  COMPUTER  GEOMETRY  SCG ’ 2007,  VOLUME 16, 

          pp. xy -xz 

where . The function d(u) is called the distance function and the scalar 

values d

x y
i i id av bv c= + +

i represent the signed distances from the control points  to the line ℓ. 
The function d(u) is a Bézier polynomial function. 

( ,x y
i i iv v=V )

Fat Line. Let V0, V1, … , Vn be the Bézier control points in the plane. The fat line of the 
Bézier curve is each strip in the plane with boundary lines to be parallel to the line ℓ = 
V0Vn. To restrict the number of fat lines of P(u) we suggest the fat line L of the cubic Bé-
zier curve of the form (2), as the set of points 2∈X E  which satisfy , 
where d

min maxxd d d≤ ≤

min = min{d0, d1, …, dn}, dmax = max{ d0, d1, …, dn} and dx, di, , are 
the signed distances (7) from the points X, V

0,1,  ... ,i n∈
0, V1, … , Vn to the line ℓ = V0Vn. The line ℓ 

is represented by (5), so the boundary lines ℓ’, ℓ’’ of the fat line L are expressed as: 

ℓ’ : ax + by + c + dmax = 0, ℓ’’ : ax + by + c + dmin = 0.  (8) 

All the points of the convex hull belonging to the Bézier curve coincide with the fat line L 
= | ℓ’ ℓ’’|. 
Iteration and Tolerance. The algorithms of iterations are based on an iterative process. 
The iteration terminates when 

o the convex hull of the curve on the corresponding iteration does not intersect the 
axis – this indicates that there is no intersection of Bézier curve with the paramet-
ric axis or the given line. 

o the interval of interest [umin, umax] is smaller than a given threshold value of tol-
erance ε (Test B). The algorithm gives as a “return value” interval [tmin, tmax] after 
each clipping iteration and the situation, when [tmin, tmax] < ε we regard as a final 
iteration. Then the intersection is assumed to exist in the centre of the “final” in-
terval of interest [tm

min, tm
max]. Note that we take the centre of interval for final, but 

approximate value of the root.1 

4.2 Algorithms 
Bézier clipping method consists of several steps that are explained below. 
PT Algorithm (Polynomial – t parametric Axis Algorithm) 
To find the root of the polynomial function. 
Input data:  ■ suppose we have a polynomial defined by a functional equation  

    , 0 1( ) a a  ... a n
ny v t t t= = + + + ,t a b∈ , 

    ■ parametric axis t by equation  
 y = 0     (ax + by + c = 0, where a = c = 0). 

Step 1. Conversion of given polynomial into the parametric Bézier curve of degree n. 
Step 2. We determine the convex hull of the curve segment control polygon. 
Step 3. Test A - to determine whether a Bézier curve’s convex hull intersects the t axis. In 
a positive case this gives us an interval of interest [tmin, tmax]. See Fig. 2a. 
Step 4. For the values tmin, tmax we have to determine the ordinates of the points on the Bé-
zier curve B(t). This gives us the interval of interest on the curve which corresponds to the 
interval [tmin, tmax]. We conclude that the curve segments corresponding to the intervals 

                                                 
1 Note: If the interval of interest does not change more than 80% the Bézier curve is subdivided at the midpoint 
and the algorithm is applied to each segment. 
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mint t<  and don’t intersect the axis t and we clip them away (with respect to VDP). 
See Fig. 2b. 

maxt t>

Step 5. Test B - to compare the change of new found interval [ti
min, ti

max], i = 1, 2, …, m to 
the original interval [a, b], or to the previous interval [ti

min, ti
max] because of [tm

min, tm
max] 

 …  [t⊆ ⊆ i
min, ti

max]  [t⊆ min, tmax]  [a, b]. Figure 2 shows the first clipping iteration. The 
Bézier clipping terminates when [Chap. 4.1]: 

⊆

a) the convex hull of Bézier curve on the corresponding iteration does not intersect t axis. 
b) the length of the interval [tmin, tmax] is smaller then a threshold value ε. 
Output data: The root(s) of the polynomial function. 
 
CL Algorithm (Curve – Line Algorithm) 
To find an intersection of planar Bézier curve and a line. 
Input data:  ■ Bézier curve ( ),0

( ) n
i n ii

t B t
=

=∑ VB , ,t a b∈ , 
■ line ℓ by its implicit equation ℓ: ax + by + c = 0, and the coefficients 

a, b, c are modified to the form: a2 + b2 = 1. 
Step 1. The signed distance  from the control points VRid ∈ i to the given line ℓ. [Chap. 
4.1] 
Step 2. We specify the “new” control points [ ];i i n d=D i  for i = 0, 1, … , n. 
Step 3. We apply PT algorithm for function d(t). 
Output data: Intersection points of Bézier curve and the line ℓ. 

 
CC Algorithm (Curve – Curve Algorithm) 
To find an intersection of two planar Bézier curves. 
Input data:  ■ Two Bézier curves ( ) ( )0

n n
i ii

u B u
=

=∑B V , ,u a b∈ , 

                          ( ) ( )0

m m
j jj

v B v
=

= ∑C P , ,v c d∈ . Fig. 3 a). 

Step 1. Test C - to determine intersection of two Bézier curves convex hulls by the Min-
max box method; more details in [Pal06],[Mar99]. 
Step 2. We construct the fat line ℓ’ℓ’’ [Chap. 4.1] of the curve C(v). See Fig. 3 b). Re-
mark: If the given Bézier curves are of second or third degree we can construct the Fat 
line to be narrower strip [Pal06]. 
Step 3. Using previous algorithms or their parts we find the intersection of Bézier curve 
with lines ℓ’, ℓ’’. We practice CL algorithm and modified PT algorithm. Fig. 3 c), d). 
Output data: Intersection points of two Bézier curves. 
 

    
    (a)     (b) 
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    (c)     (d) 

Figure 3. CC algorithm. (a) Given curves. (b) Fat Line of C(v) and Signed Distances of B(u). (c) 
New Form of Bézier curve. (d) After First Clipping Iteration for C(v). 

 

5 INTERSECTION OF SPACE NONRATIONAL BÉZIER CURVES 
We formulate a new technique for computing the roots of “polynomial equation sys-

tems”, because of simple 3D space decomposition (“reduction”) onto two planar cases of 
curves intersection. Each partition of decomposition is solved separately, but the final step of 
given method consists of a reverse composition both parts. We come out of theorems about a 
pair of projections of two lines, the first in π, the second in υ, and the two so related that per-
pendiculars from them to the axis have a common ordinate (as in Section 4 is described) and, 
conversely, analogous. We get a suitable assumption to determine intersection of two curves 
in 3D(x,y,z) coordinate system and conclude the corollary of these theorems (for some next 
similarities see [Hlu00]). 
Theorem. a) Let p, q be the concurrent lines which are not perpendicular to the ground line; 
their intersection point is marked M. Then their first and second projections p1, p2, q1, q2 are 
all lines, no one of them is the ordinate. Hereby one and only one of the following conditions 
holds [Fig.4]: 

1. (p1, q1) and (p2, q2) are pairs of concurrent lines whereby points , 
 lie on the ordinate, 

= ∩1 1M p q1

2

                                                

= ∩2 2M p q
2. lines p1, q1 coincide together and pair of lines (p2, q2) are concurrent lines, 
3. pair of lines (p1, q1) are concurrent lines and lines p2, q2 coincide together. 

b) If for the lines p1, p2, q1, q2, each of which lie in the drawing plane and which are not ordi-
nates, occur one of that three opportunities listed in part a), then the lines are first and sec-
ond projections of concurrent lines p, q; no one of them is perpendicular to the ground line. 
Proof.2

 
2 Proof of above theorem may be found in [Kraem91] 
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Figure 4. Projections of Concurrent Lines.   Figure 5. Projections of Skew Lines. 

Theorem. a) Let p, q be the skew lines which no one of them is perpendicular to the ground 
line. Then their first and second projections p1, p2, q1, q2 are all lines, no one of them is the 
ordinate. Hereby one and only one of the following conditions holds [Fig.5]: 

1. p1, q1 are concurrent lines with point of intersection M1; p2, q2 are concurrent lines 
with point of intersection N2, whereby points M1, N2 don’t lie on the ordinate, 

2. p1, q1 are various parallel lines and p2, q2 are concurrent lines, 
3. p1, q1 are concurrent lines and p2, q2 are various parallel lines. 

b) If for the lines p1, p2, q1, q2, each of which lie in the drawing plane and which are not ordi-
nates, occur one of that three opportunities listed in part a), then the lines are first and sec-
ond projections of skew lines p, q; no one of them is perpendicular to the ground line. 
Proof.3
 
We derivate the following corollary for curves intersection, i.e. introduce the basic idea of 
promising method for solving this widespread problem. 
Corollary. Let P(u), Q(v) be the nonrational Bézier curves of degree n and m respectively in 
the 3D(x,y,z) coordinate space. Then their pairs (= first and second) of projections P1(u), 
Q1(v), P2(u), Q2(v) upon a planes of projections π and υ respectively, are both the nonrational 
planar Bézier curves of degree n and m respectively. Hereby there can occur exact these four 
opportunities: 

1. pairs of projections P1(u), Q1(v) and  P2(u), Q2(v) has no intersection respectively, 
which makes no intersection of curves P(u), Q(v), 

2. P1(u) ∩ Q1(v) = {Xi},  and P1,...i∈ 2(u) ∩ Q2(v) = { }, then P(u), Q(v) don’t intersect 
each other, 

3. P2(u) ∩ Q2(v) = {Yj},  and P1,...j∈ 1(u) ∩ Q1(v) = { }, then P(u), Q(v) don’t intersect 
each other, 

4. P1(u) ∩ Q1(v) = {Xi},  and P1,...i∈ 2(u) ∩ Q2(v) = {Yj}, 1,...j∈ , then P(u) ∩ Q(v) = 
[Xi, Yj] (in respect of the parameters u, v),  intersect each other, if and only if i iX Y  is 
the ordinate. 

The next scheme shows a whole process of finding the intersection of the P(u), Q(v) curves: 
( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )

( )

1

1

2

2

0
1 1 B.clipping

1 00
1 1

2 B.clipping
2 0

2

,

,

k

l

u u u
u k

v v v

u u
u l

v v

ϕ ψ

ϕ ψ

ϕ

ϕ

⎫⎫⎯⎯→ ⎯⎯→ ⎪ ⎪⎯⎯⎯⎯→ ∈⎬
⎯⎯→ ⎯⎯→ ⎪⎪⎭ ⎪→⎬

⎫⎯⎯→ ⎪⎪⎯⎯⎯⎯→ ∈⎬ ⎪
⎯⎯→ ⎪ ⎪⎭ ⎭

P P P
R

Q Q Q

P P
R

Q Q

`

`

 

                                                 
3 Proof of above theorem may be found in [Kraem91] 
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Test [corollary], if for corresponding values of parameters u and v holds 
( ) ( ) ( ) ( ) ( ) ( )1 2 1,2

k lu u x u u v⊥ ⇒ = =R R R P Q R∩ v  
ϕ1 - orthogonal projection upon the plane π, 3 2

1 : =ϕ π→E� E  
ϕ2 - orthogonal projection upon the plane υ, 3 2

2 : =ϕ υ→E� E  
ψ - rotation of π into υ, :ψ π υ→  
 

6 CONCLUSION AND FUTURE WORK 
In this paper we describe the technique for finding intersection of spatial Bézier curves 

using properties of Mongean method in the context of plane curves only. There are the main 
themes of future work, detailed in [Pal06]: 

o Bézier clipping for non-Bézier  curves 
o Transformations of Bézier curves suffering by many disadvantages to the spline 

curves. 
o Convergence of Bézier clipping 
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