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Abstract

Humans recognize objects visually on the basis of material composition as well as shape. In
reality, appearance is controlled by the complex interplay of light (electromagnetic radiation
coming from various sources) and the materials composing the objects in the scene, with
complex scattering effects taking place all along the path of light. In computer graphics
there are two fundamental visual attributes used to describe the appearance of objects in
synthetic images. These attributes are color and gloss.

In this work we are attempting to overview fundamental knowledge of material appear-
ance in field of computer graphics. We start with discussion of some aspects of the human
perception of the light and outline some physical properties of the light-material interactions.
Then we discuss fundamentals of the color perception and the colorimetry. We also overview
common models of how materials scatter light. Then we introduce some system devoted to
material appearance measurement.

In our research we are focusing on acquirement and analysis of the data related to the
material appearance. These data explain how the material reflects the light and can be used
to render synthetic images. We are also focusing on editing and transporting of the material
appearance of objects depicted in single images.
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Chapter 1

Introduction

The appearance of an object is important in both the real world and in a computer graphics
scene. From an object’s color alone we can determine the season by the leaves, the weather
by the sky, or the food freshness. Gloss reveals to us the cleanliness of a table, or the age
of a car, as we can see in Figure 1.1. These judgments are made instinctively by analyzing
the light reflected from the items to our eyes. When applied to synthetic imaging, we judge
the realism of a computer graphic picture by the appearance of the objects in the rendered
environment. If the light that reaches us from the image evokes a visual response similar to
that of viewing the real world scene, we describe the picture as being realistic.

Figure 1.1: A comparison of old and new car coat. Left: Rough surface of rusty car absorbs and
scatters incident light [27]. Right: Smooth polished coating of new car reflects light source [68].

To acquire realistic appearance of scene objects, we need to know how they interact with
incoming light. Visual appearance of them then depends on the light source, their geometry
and chemistry, and also the human perception.

Although, we are focusing in this work mostly on physical light-material interaction,
human perception and judgment how the object will look depends not only on physical
phenomena, but also on psychological phenomena. Light leaving an object that reaches our
eye is the physical stimulus that allows us to see it. The connection between that stimulus
and the idea that we form about the object is a complex result of the physiology of human
eye and the processing in the brain.

1



1.1. Light and Human Visual System 2

1.1 Light and Human Visual System

Light is the electromagnetic radiation. In the wavelength band between roughly 380 nm and
830 nm is light visible to the human eye. Wavelengths in this band represent colors from violet
to red. All these colors forms visible spectrum. For example wavelength of the yellow light
is about 570 nm. An object which reflects just light with this wavelength appears as yellow.
However, if object reflects green (wavelength about 520nm) and red (wavelength more than
650nm) light of the same intensity ratio, this object appears also yellow. This is because
retina of the human eye contains of three types of color receptors cells: short-wavelength
cones, middle-wavelength cones and long-wavelength. Short-wavelength cones are responsive
to light that is perceived as violet or blue. Middle-wavelength cones are responsive to yellow
or green light and have negligible response to the light of the wavelength about 650nm.
Long-wavelength cones are not as much responsible to green light as to yellow, but they
have certain response to light of the wavelength about 650nm and more. Lower response of
long-wavelength cones to green light is recompensed with presence of red light, and therefore
a composition of green and red light is perceived as yellow.

Another type of the photoreceptors, called rods, exists at the retina. Rods are used when
very little light is available. They are approximately 25 times more sensitive than cones and
are responsible for vision from twilight illumination to very dark lighting conditions when
color recognition is delimited.

Human eye is not equally sensitive to all wavelengths in the visible range. The sensitiv-
ity of human eyes over the visible range under well-lit conditions is given by the luminous
efficiency function, which can be approximated by a bell-shaped curve peaking at 555 nm,
see Figure 1.2. Such a curve is standardized by the Commission Internationale de l’Eclairage
(CIE) and is known as the V(λ) curve, or CIE photopic luminous efficiency curve. This curve
implies that in human observation blue light seems darker then green light.

Figure 1.2: CIE standard observer photopic luminous efficiency curve [13].

The human visual system adapts to the prevailing conditions of illumination. Thus,
adaptation renders visual system less sensitive in daylight and more sensitive at night. For
example, car headlights that let drivers drive at night go largely unnoticed in daylight, as
shown in Figure 1.3.

When we are for a while in dark and then our eyes are exposed to a brief light of moderately
high intensity the response reaches its maximum and the photoreceptors are saturated. The
photoreceptors lose sensitivity to any additional light intensity.
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Figure 1.3: Although the headlights are on in both images, our eyes are less sensitive to car
headlights when background intensity is higher [64].

Photorceptors contain photopigment rhodopsin (composition of a protein called opsin
and a chromophore derived from vitamin A known as retinal) in their outer segment. When
rhodopsin is exposed to the light, then retinal changes shape and activates the protein called
transducin. Each transducin then activates the enzyme cGMP-specific phosphodiesterase,
which leads to closing a membrane bound cGMP-gated cation channels. Steady current flows
through these channels into the photoreceptor, carried mainly by sodium cations, constitut-
ing a ”dark current” that partially depolarizes the photoreceptor cell. When ions flow stops,
photoreceptors charge inside the membrane becomes more negative (cell becomes hyperpo-
larized). This leads to the reduction in the release of the neurotrasmitter glutamate, which
affects membrane potential of the bipolar cells (cells between photoreceptors and neurons of
the retina called ganglion cells). The neurons then relay the signal to the primary visual
cortex which is located at the back of the brain.

The absorbance characteristics for the photopigments of the rods and cones are shown
in Figure 1.4. Note that Figure 1.4 only shows relative sensitivity. Much higher sensitivity
of rods than sensitivity of cones is due to the fact that rods have a larger diameter and are
longer. Also, it takes longer for the rod pigments to regenerate.

Photochemical reactions discussed above breaks down photosensitive pigments and tem-
porarily renders the rod and cone photoreceptors insensitive - a process called bleaching. The
pigments are regenerated in a relatively slow process. Thus the visual adaptation as a func-
tion of light intensity could be attributed to the depletion and regeneration of photopigment.
Rod photopigments are completely depleted when exposed to the higher light intensity.

However, cone photopigments are not significantly depleted even in bright sunlight. Al-
though, the sensitivity of the cones continues to diminish according the prevailing conditions.
This lack of correlation between photopigment concentration and visual sensitivity, as well
as other experimental evidence, suggests that unless virtually all pigments are bleached the
visual adaptation to different illumination conditions cannot be completely attributed to
photo-pigment concentration [14].

Interesting property of human visual system is ability to recognize same color under
different illuminants. For example, piece of paper illuminated by sun is perceived as white.
Moreover, same paper is perceived by a human as white under yellow lamp, while depicted
in photography is yellow. This is called color constancy [23, 82]. Nowadays cameras have
feature which allows adjustment of colors under different illumination of scenes. This feature
is called white balance.
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Figure 1.4: Absorbance characteristics for the photopigments found in the rods and cones. The
maximum absorbance of the red, green, and blue cones is located at 559 nm, 531 nm, and 419 nm,
respectively. The maximum absorbance of the rod is located at 496 nm [23].

1.2 Light and Surface Interaction

In geometric optics light is traveling along straight paths from the source. As ray of light
hits surface, it may be either absorbed or redirected in a new direction. If light hits the
surface, quantity of redirected light may decrease as a result of the absorption. Light of some
wavelengths may be absorbed more then light of others, which turns out a color perception.
Incident light may be also scattered into multiple directions. Scattered light which leaves a
surface in each direction is an effect of the light interaction with rough surfaces [55]. If surface
is perfectly polished, incident ray is redirected into its mirror image (angle of incidence is
equal to the angle of reflection), although certain amount of incident light may be refracted
into the material volume.

Reflection and refraction that occur at a material boundary, are described by the Fresnel
equations as a function of the angle of incidence. Many materials exhibit a higher degree of
reflectivity at extremely shallow (grazing) angles. This phenomenon is notable when we are
looking at a water surface, see Figure 1.5. If we are above water and looking at the water
surface at a grazing angle, we will see a specular (mirrorlike) reflection of a bank. At steeper
angles we will see a lake bottom rather then the sky above.
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Figure 1.5: Example of the Fresnel phenomenon. Left: Reflection at the water surface. Right:
Refraction of the bottom [49].

1.3 Project Outline

• Chapter 1 (Introduction) We introduce some functionality of a human visual system.
We will reveal some aspects of the human perception of the light and outline some
physical properties of the light-material interactions.

• Chapter 2 (Color) In this chapter we introduce some knowledges gained by the field
of science called colorimetry. We will discuss some wavelength dependent properties of
the light. We will also briefly overview some important color spaces.

• Chapter 3 (Reflectance Models) This chapter is devoted to the mathematical descrip-
tions of the common models for how materials scatter light. We will define the basic
terms, concepts, and notations used in describing light and materials.

• Chapter 4 (Measurement) In this chapter we overview systems for measuring BRDF.
This chapter also introduces some industrial measurement devices.

• Chapter 5 (Project of Dissertation) This chapter reveals intentions in our ongoing
research and state desired goals we want to achieve in the future.

• Chapter 6 (Preliminary Results) Finally we conclude with our preliminary results,
showing a method for material appearance transport between single images.



Chapter 2

Color

If ray of the white light hits triangular prism, light breaks up into its constituent spectral
colors, see Figure 2.1. In 17’s century people believed that light is colorless, and that the
prism itself produced the color. This image was changed by Isaac Newton and his experiments.
He passed the red color created by one prism through a second prism and found the color
unchanged. From this, he concluded that the colors must already be present in the incoming
light thus, the prism did not create colors, but merely separated colors that are already
there. He also used a lens and a second prism to recompose the spectrum back into white
light.

Figure 2.1: Braking light into spectrum by the prism.

Speed of light c is 299,792,458 m/s in the vacuum. As light travels through matter, it
is gradually absorbed and emitted by atoms in its path. These processes consume certain
amount of time and it causes that light appears to travel slower. This slower speed v depends
both on the type of the matter and the wavelength of light.

A measure of how much the velocity of a wave is reduced inside a medium is called index
of refraction. Index of refraction n is defined by the following formula:

n =
c

v
. (2.1)

When light traveling in one transparent medium encounters a boundary with a second
transparent medium, a portion of the light is reflected and a portion is transmitted into

6
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the second medium. As the transmitted light moves into the second medium, it changes its
direction of travel; that is, it is refracted, see Figure 2.2. The law of refraction, also known
as Snell’s law, describes the relationship between the angle of incidence θi and the angle of
refraction θt, in mathematical terms:

sinθi
sinθt

=
n2

n1
, (2.2)

where n1 and n2 are the index of refraction of the first and second media, respectively.
Because the index of refraction depends on the light wavelength, the medium refracts lights
with different wavelengths to different directions. Therefore the prism decomposes light which
consists of all visible wavelengths into the visible spectrum.

Figure 2.2: Light changes its trajectory at the border between media because it travels the path
which takes the least time rather then shortest path. If light would be traveling straight from A to
B, then it would spend more time in slower media.

2.1 Standard Illuminants

Light sources are described by their spectral power distribution (SPD). SPD is a representation
of the radiant power emitted by a light source as a function of wavelength.

The International Commission on Illumination has defined a set of standard illuminants
to be used for colorimetry. Figure 2.3 shows SPD of the CIE illuminants D55, D65, and
D75. Illuminant D65 represents the noon daylight with a correlated color temperature of
approximately 6500 K. Illuminant D55 with correlated color temperatures of approximately
5500 K represents the mid-morning. Illuminant D75 with correlated color temperatures of
approximately 7500 K represents the north sky daylight. The color temperature of a light
is the temperature of an ideal black-body radiator that radiates light of comparable hue to
that light [36]. Higher color temperatures (5000 K or more) are cool (blueish white) colors;
lower color temperatures (2700 - 3000 K) are warm (yellowish white through red) colors.

A blackbody radiator is experimentally realized by creating a concavity whose walls are
kept at a constant temperature. Radiation can only escape through a little hole. The hole
has to be so small that radiation entering or leaving the whole does not alter the temperature
of the black-body radiator. Radiation is measured in front of the hole using a spectrometer.
SPD of a black-body depends only on its temperature. It is given off equally in all directions.
Such a radiator which emits radiation equally in all directions is called a Lambertian radiator.
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Figure 2.3: Spectral power distribution of CIE illuminants [64].

2.2 Color Spaces

As mentioned in chapter 1, there are tree types of photoreceptor cells in the human eye
responsible for the color vision. Short-wavelength cones are most sensitive to blue light,
middle-wavelength to green light and long-wavelength to red light. Absorbance curves of
these three types of cones are in Figure 1.4. This indicates that other colors could be created
by using just three colors.

Multiple colormatching experiments have been performed to match colors from visible
spectrum to the colors created by three primary light sources. In these experiments, primary
light sources have been projected to one side of a white screen. A fourth light source, the
target color which represents a sample color from spectrum, have been projected to the other
side of the screen. Participants in the experiments were given control over the intensity of each
of the three primary light sources and were asked to match the target color. By recording the
intensities of the three primaries for each target wavelength, three color-matching functions
have been obtained: r(λ), g(λ) and b(λ). Figure 2.4 shows weights for primary lights at
wavelengths 700 nm, 546.1 nm, and 435.8 nm to match a color stimulus of a given wavelength.
Note that the red curve gains negative values. As the light source can not radiate negative
intensities, negative values of the red primary source was obtained in the experiment, by
adding red light to the target color. Because the red cones have plumbless response to the
green light at wavelength 546.1 nm, the negative values of the red light are required to form
colors from the band of the spectrum between blue and green . These negative values are
caused by the fact, that to certain wavelengths, more then just one type of cones has a
response. This problem implies that not every visible color is able to construct from red,
green and blue light.

In that it is simpler to deal with a color space whose values are always positive, the CIE
has defined alternative color-matching functions chosen such that any color may be matched
with positive primary coefficients. These color-matching functions are named x(λ), y(λ) and
z(λ) (see Figure 2.5). These weights are obtained by two steps. Firstly, following linear
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transformation is applied:
x(λ)

y(λ)

z(λ)

 =


0.49000 0.31000 0.20000

0.17697 0.81240 0.01063

0.00000 0.01000 0.99000



r(λ)

g(λ)

b(λ)

 (2.3)

and after the linear transformation has been applied, the weights x(λ), y(λ) and z(λ) are
computed as follows:

x(λ) =
x(λ)

y(λ)
V (λ) (2.4)

y(λ) = V (λ) (2.5)

z(λ) =
z(λ)

y(λ)
V (λ) (2.6)

where V (λ) is the photopic luminous efficiency function shown in Figure 1.2.

Figure 2.4: Intensities for red, green and blue light to create a color of a given wavelength [23].

Figure 2.5: Nonnegative weights used by a standard observer to create any given color sensation
[23].
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CIE has defined tristimulus values X, Y, and Z. These values represents imaginary over-
saturated colors [69], thus illuminantion Qλ of every color from the visible spectrum can be
represented by the following linear combination

Qλ = x(λ)LX + y(λ)LY + z(λ)LZ , (2.7)

where LX , LY and LZ are primary lights which emits light of imaginary colors corespondent
to X, Y and Z, respectively. Tristimulus values of the CIE XYZ colorspace are mathematically
obtained by integration of the illumination Qλ through all color from the visible spectrum.

X =

∫ 830

380
Qλx(λ) dλ (2.8)

Y =

∫ 830

380
Qλy(λ) dλ (2.9)

Z =

∫ 830

380
Qλz(λ) dλ (2.10)

The CIE XYZ matching functions are defined such that a theoretical equal-energy stimulus,
which would have unit radiant power at all wavelengths, maps to tristimulus value (1, 1, 1).
Further, note that y(λ) is equal to V (λ) - another intentional choice by the CIE. Thus, Y
represents photometrically weighted quantities.

For any visible color, the tristimulus values in the CIE XYZ color space are all positive.
However, as a result the CIE primaries are not realizable by any physical device.

If the energy of each primary color is increased by the same percentage, then the relative
responses of the receptors will not be any different. Therefore, colors are usually specified
using normalized colors, or chromaticities. The chromaticities of the CIE XYZ color space
are given by

x =
X

X + Y + Z
(2.11)

y =
Y

X + Y + Z
(2.12)

z =
Z

X + Y + Z
= 1− x− y (2.13)

Because z is known if x and y are known, only the latter two chromaticity coordinates need
to be kept. Chromaticities are relative, which means that within a given system of primary
stimuli two colors with the same relative spectral power distribution will map to the same
chromaticity coordinates.

Chromaticity coordinates may be plotted in a chromaticity diagram with two axes. A
CIE xy chromaticity diagram is shown in Figure 2.6. All monochromatic wavelengths map to
a position along the curved boundary, called the spectral locus, which is of horseshoe shape.

The three primaries used for any given color space will map to three points in a chro-
maticity diagram and thus span a triangle. This triangle contains the range of colors that
may be represented by these primaries (assuming nonnegative tristimulus values). The range
of realizable colors given a set of primaries is called the color gamut. Colors that are not
representable in a given color space are called out-of-gamut colors, see Figure 2.7.

2.2.1 RGB Color Space

Color spaces encompass two different concepts. First, they are represented by a set of formulas
that define a relationship between a color vector (or triplet) and the standard CIE XYZ color
space. This is most often given in the form of a 3-by-3 color transformation matrix, although
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Figure 2.6: Gamut of colors in CIE XYZ space. The chromaticities of light in the visible range
from 400 nm to 700 nm form a horseshoe-shaped region. The chromaticities for a black-body radiator
at different temperatures is shown in the center. The color of a blackbody radiator passes from red
at low temperatures through white and on to blue at higher temperatures. The point of equal energy
is located at the center of the graph [23].

there are additional formulas if the space is nonlinear (e.g. CIE LAB). Second, a color space
is a 2D boundary on the volume defined by this vector, usually determined by the minimum
and maximum value of each primary - the color gamut.

In the RGB color space, color is defined with respect to a unit cube [28]. The cube is
defined using three axes, red, green, and blue, as shown in Figure 2.8. Each point inside the
cube defines a unique color. Let c = [R,G,B] with R,G,B ∈ [0, 1] be a point inside the color
cube. Then the individual components r, g, b specify the intensity of the red, green, and
blue components that are used to produce a single pixel on the screen. The eight corners of
the cube can be labeled with the colors black, red, green, blue, yellow, magenta, cyan, and
white. The gray scale is located inside the cube. It starts at the origin with the black color
and extends all the way through the cube to the opposite corner of the cube to the white
color.

The conversion from XYZ to RGB may be computed by the following linear transforma-
tion: 

R

G

B

 =


3.2405 −1.5371 −0.4985

−0.9693 1.8760 0.0416

0.0556 −0.2040 1.0572



X

Y

Z

 (2.14)

As wavelength responses of red and green cones are noticeably overlapping and we can not
obtain negative intensities of the red light, the gamut of this space does not involve all visible
colors. Nevertheless, the gamut of the following color space consists of all visible colors.
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Figure 2.7: If three monochromatic primary colors are chosen for the display device then some col-
ors cannot be created by the display device. The triangular-shaped subregion assumes three monochro-
matic primary colors at 400 nm, 520 nm, and 700 nm. Colors that are located inside the two gray
regions lie outside the gamut of colors of the display device [23].

2.2.2 L*a*b* Color Space

The CIE LAB color space is a three-dimensional color space that is perceptually more uniform
than the CIE XYZ color space. This color space was intended for use with surface colors.
The three coordinates L∗, a∗, and b∗ are computed from the tristimulus values X, Y, and Z
as follows:

L∗ =

 116( YYn )
1
3 − 16 if Y

Yn
> 0.008856

903.3( YYn ) if Y
Yn
≤ 0.008856

(2.15)

a∗ = 500(f(
X

Xn
)− f(

Y

Yn
)) (2.16)

b∗ = 200(f(
Y

Yn
)− f(

Z

Zn
)) (2.17)

where Xn, Yn, and Zn describe a specified white object color stimulus and the function f is
defined as

f(x) =

 x
1
3 if x > 0.008856

7.787x+ 16
116 if x ≤ 0.008856

. (2.18)

L∗ describes lightness and extends from 0 (black) to 100 (white).

Chromatic components a∗ and b∗ are based on the opponent process. It is a process of
coding colors in neural system. The three types of cones have some overlap in the wavelengths
of light to which they respond, so it is more efficient for the visual system to record differences
between the responses of cones, rather than each type of cone’s individual response. The



2.2. Color Spaces 13

Figure 2.8: RGB color space. Color is defined with respect to a unit cube [23].

opponent color theory suggests that there are three opponent channels: red versus green, blue
versus yellow, and black versus white (the latter type is achromatic and detects lightness).
Therefore a∗ denotes position between red and green, and negative values of a∗ indicate green
while positive values indicate magenta. Coordinate b∗ denotes position between yellow and
blue and, negative values of b∗ indicate blue. Positive values of b∗ indicate yellow.

Uniform changes of components in the CIE LAB color space aim to correspond to uniform
changes in perceived color, so the relative perceptual differences between any two colors in
CIE LAB can be approximated by treating each color as a point in a three dimensional space
(with three components: L∗, a∗, b∗) and taking the Euclidean distance between them.

The main advantage of this color system is that color is decoupled from intensity. For
instance, if we view a red sphere illuminated by a single light source, then illumination varies
over the surface of the sphere (Figure 2.9). Because of this, one can use this information
to extract the three-dimensional shape of objects given a single image. This research area
is known as shape from shading [33, 2, 66, 34, 40]. But suppose we wanted to segment the
image. We want to locate all pixels that belong to the sphere. This can be easily done using
a color space where color is specified by lightness, saturation, and hue. Knowing that the
sphere is red, one transforms the RGB values into such a color space. All pixels that have a
red hue are assumed to belong to the sphere.

Figure 2.9: Left: Sphere illuminated by a single light source. Right: Segmentation is simpler if
only hue is considered.



Chapter 3

Reflectance Models

The rendering of realistic images in computer graphics requires models of how objects reflect
light [31]. Given a light source, a surface, and an observer, a reflectance model describes
the intensity and spectral composition of the reflected light reaching the observer. The
intensity of the reflected light is determined by the intensity and size of the light source and
by the reflecting ability and surface properties of the material. The spectral composition
of the reflected light is determined by the spectral composition of the light source and the
wavelength-selective reflection of the surface. In this chapter we will discuss some models
that try to mimic the appearance of real-world materials. Bud first in following section, we
introduce some basic terms and definitions.

3.1 Mathematical Background

To make physically-based numerical definitions, we need to define various expressions for
how incident light energy is distributed by a material with respect to position, direction,
and wavelength. We need a mathematical mechanism that allows us to specify particular
direction, position, or wavelength values, and then lets us add up all the particular values for
all directions, positions, or wavelengths. We will rely that we can divide the quantities we
are interested in into infinitesimally small pieces, which approach zero in size but still have
meaning. We can take ratios of them to specify values at particular points. We can add up
the small pieces at all points to find the quantity for the object as a whole.

Expressing directional variation introduces complications in addition to the concept of
using infinitesimals. However, directional variations are essential to modeling appearance.
The key quantity in defining light transfer in a particular direction is radiance. The key
quantity for expressing the directional effect of materials on the incident radiance is the
bidirectional reflectance distribution function (BRDF).

We denote energy as Q. The unit of energy is joule. Since we are interested in light
transfer and not in its storage, we will only be dealing with the rate that it moves through
an environment per unit time. The rate of energy transfer per second is power. The unit of
power is watt. The power radiated is referred to as the radiant flux. To express the average
flux Φ over a period of time, we would measure the energy ∆Q transferred through some
time period ∆t and find:

Φ =
∆Q

∆t
. (3.1)

To find the flux Φ(t) at a particular instant, we consider differential period of time dt, which
is the quantity ∆t as it approaches zero. The differential amount of energy dQ transfered in
dt is:

Φ(t) =
dQ

dt
. (3.2)

14
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The average flux leaving per unit area (Figure 3.1), or radiant exitance M, is the total
flux leaving divided by surface area A, or

M =
Φ

A
. (3.3)

Figure 3.1: A quantum of the energy radiated from certain area per second.

To express the radiant exitance from a particular point (x, y) of the area, consider area
around this particular point, which is shrinking until it is infinitesimally small. By considering
this infinitesimally small area dA, we can define the radiant exitance M(x, y) at a particular
position:

M(x, y) =
dΦ(x, y)

dA
. (3.4)

This denotes the energy of light emitted from the point at coordinates (x, y) per second per
unit area. Which is fragment of energy dΦ(x, y) emitted form infinitesimally small fragment
of surface around (x, y) per fragment of time per infinitesimally small area dA.

The radiant energy per unit time and area arriving at a surface is called the irradiance
E. It is defined in the same manner as M, with the only difference being whether the radiant
energy is approaching or leaving the surface.

To include directional effects, we should consider how the point of view affects perception
of an area. When viewing direction is perpendicular to a patch then perceived area of this path
is greater then perceived area of a patch viewed at a more glancing angle, see Figure 3.2. Since
we are dealing with infinitesimally small patches then, we can omit perspective deformation.
Therefore the value of reduced area can be computed using orthogonal projection. Such
projection is achieved by multiplication of the area by cos θ.

The key quantity radiance in a particular direction Θ is defined as the radiant flux per
unit solid angle and unit area projected in the direction θ (angle between surface normal and
direction Θ). The radiance L is defined as:

L(x, y,Θ) =
ddΦ(x, y,Θ)

cos θ dAdω
, (3.5)

where dω is the solid angle. Solid angle is equal to the area of the segment of unit sphere. A
solid angle equals the area of a segment of unit sphere in the same way a planar angle equals
the length of an arc of unit circle.
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Figure 3.2: The apparent size of surface A is larger when it is projected in the direction of its
surface normal, than when it is projected in a direction at an angle θ to the normal.

The flux ddΦ(x, y,Θ) is a fragment of flux dΦ(x, y) emitted from infinitesimally small
patch at (x, y), which exits unit sphere through the solid angle dω in the direction Θ, see
Figure 3.3. Although rays emitted from a patch to an area of the solid angle may have not
particular direction, when patch and solid angle become infinitesimally small, only rays from
patch with the specific direction reach the area of the solid angle.

Figure 3.3: Flux of the light emitted from the area dA exiting unit sphere through solid angle.

The other variable that we want to account for in addition to time, position, and direction,
is wavelength. Implicitly, since we are concerned with visible light in the span of 380 to 780
nm, all of the quantities we have discussed so far are for energy in that band. To express flux,
irradiance, radiant exitance, intensity, or radiance as a function of wavelength, we consider
the quantity at a value of λ within a small band of wavelengths between λ and λ + dλ. By
associating a dλ with each value, we can integrate spectral values over the whole spectrum.
We express the spectral quantities such as the spectral radiance as:

L(λ, x, y,Θ) =
dddΦ(λ, x, y,Θ)

cos θ dAdω dλ
. (3.6)

To describe how a surface redirects light, we consider light incident on the surface at
x = (x, y) with radiance L(λ,x ← Θi) within a differential solid angle dωi. The irradiance
dEi on the surface that will be either absorbed or redirected is:

dEi(λ,x← Θi) = L(λ,x← Θi)cos θi dωi. (3.7)



3.1. Mathematical Background 17

The cos θi term appears because the radiance L measures energy per unit area dA in the
direction of travel Θi, and that direction projected into the orientation of the surface we are
considering is cos θi dA. The dωi term enters in because we want to know the effect of energy
coming from a single direction representing a differential section of all the possible directions
above the surface. The light reflected by the surface in each direction can be described by
the radiance in each direction. The effect of a material redirecting light is then given by a
function that is the ratio of the radiance reflected in a particular direction Θr as a result of
the total incident flux per unit area from another direction Θi as shown in Figure 3.4. This
ratio is referred to as the BRDF. It is defined by fr:

fr(λ,x,Θi → Θr) =
dLr(λ,x→ Θr)

dEi(λ,x← Θi)
. (3.8)

Figure 3.4: Flux of the light entered unit sphere through dωi and reflected from the area dA
through solid angle dωr.

Note that fragment of the flux emerged in numerator of fr is fragment of the flux of the
light of the wavelength band between λ and λ+ dλ, which enters unit sphere through dωi, is
reflected from dA and leaves unit sphere through dωr. While in denominator is emerged flux
of the light of the wavelength band between λ and λ+ dλ, which enters unit sphere through
dωi and is just incident with dA.

The BRDF is a distribution function, not a reflectance. It describes how the radiance is
distributed in different directions, rather than expressing the fraction of energy reflected. If
we would characterize the distribution of the light as the ratio of the reflected radiance and the
incident radiance, then as solid angle dωi approaches zero, the reflected radiance approaches
also zero because less flux is incoming through dωi. However, ratio of the reflected radiance
and incident solid angle dωi does not go to zero even if this solid angle approaches zero.

3.1.1 BRDF Properties

Reciprocity: Interchanging incoming and outgoing direction does not change the value of
the BRDF:

fr(λ,x,Θi → Θr) = fr(λ,x,Θr → Θi). (3.9)

This property is also known as Helmholtz reciprocity or Helmholtz symmetry and especially
important for physically-based rendering algorithms like bidirectional path tracing. The re-
sults of some experiments have appeared to show a failure of the reciprocity relationship,
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although such failures have subsequently been found to be due to measurement errors. The-
oretical analysis and careful experiments on everyday materials have confirmed the validity
of the reciprocity of the BRDF [74].

Energy conservation: The fraction of the energy reflected to all directions from light
incident from one direction must be between 0 and 1 if the surface is not emitting light.∫

ωr

fr(λ,x,Θi → Θr) cos θr dωr ≤ 1 (3.10)

This property is most important for physically-based rendering algorithms that compute
multiple bounces of light (e.g. Radiosity).

3.2 Fresnel Reflectance

Some shading models use Fresnel relectance in their formulas. The Fresnel equations describe
the amount of light is reflected and refracted at a perfectly smooth surface between two media.

The equations stem from wave optics and polarization of light has to be considered.
Key components of the Fresnel equations are the reflection coefficient (usually denoted Fr
in computer graphics), which gives the fraction of incident light that is reflected and the
transmission coefficient Ft, which gives the fraction that is refracted. For parallel polarized
light (p-polarized, the electric field oscillates in the plane of incidence) reflection coefficient
is defined as:

r‖ =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

. (3.11)

For perpendicular polarized light (s-polarized, electric field perpendicular to plane of
incident) it is:

r⊥ =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

. (3.12)

Here θi and θt are the angles between the surface normal and the directions of the incident
and transmitted beams, and n1 and n2 are the indices of refraction of the media on the
incident and transmitted side of the surface, see Figure 2.2.

Note that r‖ and r⊥ describe the relationship between the amplitudes of the involved
electric fields. To get from the coefficients of an electric field strength to coefficients for an
energy (or intensity, for that matter), we need to square them. For unpolarized light the
reflection coefficient is

Fr =
r2
‖ + r2

⊥

2
. (3.13)

The transmission coefficient is then

Ft = 1− Fr. (3.14)

Real materials are not perfect insulators. Therefore their index of refraction incorporates
extinction coefficient k, which indicates the amount of absorption loss when the electromag-
netic wave propagates through the material. Thus index of refraction can be written in
complex form:

n̂ = n+ ik, (3.15)

where n is the refractive index indicating the phase velocity as in equation 2.1.

If n and k are unknown, but reflectance under θi = 0 is known, Cook & Torrance suggest
to set k equal to 0 and compute n by:

n =
1 +
√
F0

1−
√
F0
, (3.16)
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where F0 is Fresnel reflectance where θi = 0. In paper [9] is derived Fresnel equation where
k = 0. This procedure yields the correct value of Fr for normal incidence and a good estimate
of its angular dependence, which is only weakly dependent on the extinction coefficient k.

3.3 Anisotropic Reflectance

Almost all materials exhibit some amount of anisotropy, meaning that their surfaces change
in appearance as they are rotated about their surface normal. An extreme example of an
anisotropic material is brushed metal. However, there are many materials for which the
anisotropic effects can be easily ignored. A smooth piece of plastic doesnt exhibit much
anisotropy as we spin it.

Surfaces such as brushed steel have elongated rather than round highlights even when the
light source being reflected is round, see Figure 3.5. Surfaces with elongated highlights in
one direction are referred to as being anisotropic reflectors.

Figure 3.5: Anisotropic materials have elongated specular highlights rather than round [13].

Although anisotropy might be caused by many different surface and material attributes,
the effect is most easily demonstrated by looking at a grooved surface, see Figure 3.6. If the
light direction is parallel to the grooves, it reflects just as it would from a smooth surface.
If the light is perpendicular to the grooves, some of the light in the troughs is reflected
differently.

3.4 Lambertian Reflectance

Lambertian, or ideal diffuse, reflectance, is in a sense the opposite of specular reflection.
Instead of all light being reflected in a single direction, it is reflected in all directions with the
same radiance [89]. The exitant radiance observed from all directions is directly proportional
to cos θi and not dependent on the view direction. The constant of proportionality in this
relationship is called diffuse reflectance ρd, also called surface albedo, is generally dependent
on wavelength.

In order to ensure energy conservation, physically-based rendering approaches typically
need ρd ∈ [0, 1] and introduce a normalization factor of 1

π . Thus, the BRDF is constant at a
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Figure 3.6: The grooves. Left: The light direction is parallel to the grooves. Right: The light
direction is perpendicular to the grooves.

surface point x:

fr(λ,x,Θi → Θr) =
ρd(λ,x)

π
. (3.17)

In real-time rendering ρd
π is usually simply substituted by a diffuse color Cd. If we sub-

stitute the absolute radiometric quantity radiance with some abstract intensity I, we get
reflected intensity:

Ir = Cd Ii cos θi. (3.18)

3.5 Phong Reflectance

The Phong model introduced in [59] was originally expressed as a reflectance function for
setting shades in an image, rather than as a BRDF formulated for computing radiance. The
goal of the model was not to accurately simulate light transfer, but to give the impression
of a threedimensional shaded surface illuminated by a directional light source. The original
model sets the color of the specular highlight to the color of the incident light, which creates
the synthetic, plastic-like look. This is because a typical plastic has a transparent substrate
with embedded color particles. So the light reflected specularly at the surface mostly retains
its color, while the light that penetrates into the surface is likely to be reflected multiple times
at the color particles, resulting in a mostly diffuse, colored reflection. The reflected intensity
is given by the following formula:

Ir = (kdCd (N · L) + ksCs (V ·R)e)Ii, (3.19)

where Cs is specular color, N is the surface normal, L is a unit vector pointing in the direction
of the light, V is a unit direction vector pointing towards the view position and R is in the
direction of perfect specular reflection, see Figure 3.7. To ensure energy conservation, scaling
coefficients kd, ks satisfy kd+ks ≤ 1. The exponent e (called shininess coefficient) determines
the sharpness of the gloss.

Note that the above formula is not exactly BRDF, it is a simplification of the rendering
equation. This rendering equation, however, includes BRDF. In real-time rendering [12],
terms Cs and Ii are simply replaced by the specular RGB color and the illuminant color,
respectively.
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Figure 3.7: The geometry of reflection.

Soon after the Phong model was first published, Blinn introduced an alternative form.
Blinn noted that mirror reflections are only observed when the surface normal is aligned with
the halfway vector H, which is the bisector of the angle between the vector to the source L
and the vector to the viewer V, see Figure 3.7. Many systems use version of Phong reflectance
where (V ·R) is replaced by (N ·H), and it is often referred to as the Blinn-Phong model.

3.6 Ward Reflectance

In [87] Ward proposed an empirical anisotropic shading model. It is similar to the Phong
model, except that rather than using the cosine term to a power, it uses an exponential
function. The exponential term is parameterized by an average slope of the microscopic
surface roughness.

The Ward model in the terms of BRDF is:

fr(Θi → Θr) =
ρd
π

+ ρs
1√

cos θi cos θr

e−
tan2 θh
σ2

4πσ2
, (3.20)

where θr is the angle between N and V, θh is the angle between N and H (see Figure 3.7). The
parameters ρd and ρs are spectral reflectance factors, that control the color of the diffuse and
specular reflection. The value of σ represents the standard deviation of the microfacet slope,
that models surface roughness by determining the spread of the specular lobe (see Figure
3.8). Small values of σ (i.e., less that 0.1) model a very nearly smooth surface. Normally, σ
is adjusted by the user to get a particular appearance, or by fitting measured BRDF data,
rather than somehow trying to measure the shape of the microscopic surface.

The Ward’s model can be expressed in both isotropic and anisotropic forms. The isotropic
Ward model in the form for real-time rendering is given by:

Ir = (kdCd + ksCs
e

(N·H)2−1

(N·H)σ2

4πσ2
√

(N · L)(N ·V)
)Ii (N · L). (3.21)

The specular highlight is controlled by a roughness factor σ that is constant across the surface.
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Figure 3.8: The light scattering at the rough surface. The length of the arrows corresponds
proportionally to the intensity redirected to particular direction.

In the anisotropic case, the roughness factor is defined in two orthogonal directions on
the surface. This creates an anisotropic effect in the specular highlight as the view direction
changes. The anisotropic Ward model is given by:

Ir = (kdCd + ksCs
e
−2

(T·H)2

σ2
T

+
(B·H)2

σ2
B

1+(N·H)

4πσxσy
√

(N · L)(N ·V)
)Ii (N · L), (3.22)

where T is a unit vector in the plane of the surface that is perpendicular to N (i.e., the
tangent) and B is a unit vector in the plane of the surface that is perpendicular to both N
and T (i.e., the binormal).

Anisotropic reflection has a significant impact on appearance, but for a complicated object
its effect is only clear when the effect of isotropic or anisotropic reflection with a different
orientation is displayed.

3.7 Cook-Torrance Reflectance

The Cook-Torrance model is a physically-based microfacet model that is focussed on (glossy)
specular reflection [9]. It uses the surface roughness model developed by Torrance & Sparrow
in [83]. This model treats surface as a collection of microscopic facets. The macroscopic
optical properties of a surface are then analytically derived from properties of individual
facets and statistical distributions of such properties.

3.7.1 Microfacet Distribution

Although, the surface has a normal N, at a microscopic level the surface has height variations
that result in many different surface orientations at a detailed level. At the perfectly flat
surface a viewer is able to see light source, if H is in the direction of surface normal N.
However, due to different surface orientations at a detailed level (see Figure 3.9), light source
may be partially seen at surface positions where H is not at direction of the surface normal.
At this particular positions, however, surface normal N has the same direction as a microfacet
normal A.
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Figure 3.9: Microfacet geometry. Upper left: Surface composed of microfacets. Upper right:
Single V-cavity with normal A. Bottom row: Interaction between microfacets, from left to right:
interreflection, masking, shadowing.

Rather than explicitly model the small geometric features, general reflectance functions
use statistical models. Statistical models are used because the variation in surface height is
assumed to be irregular and random.

A statistical model for surfaces in reflectance models generally takes the form of giving the
distribution of facets that have a particular slope. One possibility is the Gaussian distribution
of surface slopes considered by Blinn in [5]:

D = ce−
α2

m2 , (3.23)

where c is an arbitrary constant, α is the angle between surface and facet normal, and m is
the root mean square slope of microfacets parameterizing the surface’s roughness.

Most commonly used, however, is the Beckmann distribution function. It is based on
physical theory on scattering of electromagnetic waves and does not require the introduction
of arbitrary constants. The formula is:

D =
e−

tan2α
m2

m2cos4α
. (3.24)

If we assume V-grooved surface (Figure 3.9), then we need to count with self shadowing
and masking. The geometric attenuation factor G models the geometric effects shadowing
and masking between microfacets that occur at larger angles of incidence or reflection. It is
defined by the formula:

G = min(1,
2(H ·N)(V ·N)

H ·V
,
2(H ·N)(L ·N)

H ·V
). (3.25)

3.7.2 Cook-Torrance Model

The Cook-Torrance model provides a good reproduction of the appearance of many real
materials. Especially metallic surfaces profit from the increased realism of the specular factor.
Effects like the characteristic color shift towards the color of the incident light near grazing
angles and the off-specular peak for very rough surfaces greatly improve the perceived realism
of renderings. The off-specular peaks are the consequence of shadowing and masking causing
asymmetries.
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Specular component of this model can be compactly written as:

FrDG

π(N · L)(N ·V)
, (3.26)

where Fr is Fresnel term given by the formula 3.13, where incident angle θi is angle between
L and H (we assume mirrorlike microfacets which are reflecting the light from a source to
the viewers direction).

Advantage of this model is its modular structure that allows to easily replace components
with more accurate or more efficient versions. Disadvantages are the high computational
costs and the unintuitive parameters, that are hard to tweak if no measured data is available.

3.8 Psychophysically-Based Light Reflection Model

In paper [62] Ďurikovič and Ershov have proposed method to find a paint composition core-
spondent to a given BRDF. In this method paint composition is derived from psychophysical
attributes such as gloss, shade and glitter.

In paper [37] is introduced a reparametrization of an isotropic version of Wards reflectance
model. This reparametrization results in a psychophysically-based light reflection model,
where the dimensions of the model are intuitive and perceptually meaningful, and variations
along the dimensions are perceptually uniform.

This model is based on two dimensional perceptually uniform gloss space. Two percep-
tually meaningful axes in this space have been assigned. First, the contrast gloss c, second,
the distinctness-of-image (DOI) gloss d. Contrast gloss is perceived relative brightness of
specularly and diffusely reflecting areas, while DOI gloss is perceived sharpness of images
reflected in a surface (see Figure 3.10).

The expressions of the physical parameters of the equation 3.20 in terms of the perceptual
ones are following:

ρd = f−1(L∗) (3.27)

ρs = (c+ 3
√
f−1(L∗)/2)3 − f−1(L∗)/2 (3.28)

σ = 1− d (3.29)

where L∗ is CIE LAB lightness of diffuse reflectance and f is the CIE LAB lightness function
normalized in [0,1].
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Figure 3.10: The contrast gloss c and DOI gloss d in twodimensional space [56].



Chapter 4

Measurement

Measuring how materials scatter light was a topic of interest long before computer graphics
realistic image synthesis evolved. Broadly speaking, two classes of measurement systems
had developed: high accuracy BRDF measurement devices and industrial spot measurement
devices. In particular, high accuracy systems give an idea of the magnitude of uncertainty
that can be expected from even carefully constructed systems. Industrial spot measurement
systems give an idea of how powerful relatively simple measurements can be.

4.1 BRDF Measurement

Typical measurement systems consist of a light source, positioning system to hold a sample of
the target material to be measured, and a sensor that records the quantity of light scattered
from the target. Since extraneous light reflecting from the target to other surfaces in the
setup is a source of error, a room with everything coated in black is used for measurements.
Since accurate positioning is needed, the system is generally mounted on a heavy optical
table to prevent vibrations from movements in the room affecting the positions of the source,
target, and sensor.

The definition of BRDF, is in terms of infinitesimal incident and reflected solid angles,
and an infinitesimal area on the target surface. Since the components of any system will be
finite in size, some uncertainty is inherent in the process. The incident and reflected angles
and target illuminated area can be made very small, but this results in very low quantities
of energy being scattered that are difficult to measure accurately.

To obtain the absolute value of the BRDF, the detected light from a sample has to be
compared to the incident. A typical way of doing this is to compare the detected light to
that from a known sample.

Typical gonioreflectometer consists of mechanical elements to ensure the four degrees of
freedom required to measure the complete reflectance function [1]. To acquire BRDF data
this devices require to move the receptor aperture and the light source. Disadvantages of
these devices are their time inefficiency and inaccuracy related to their mechanism.

To decrease degrees of freedom the spherical sample rather then a planar sample can
be used [47, 39]. This allows us to keep the camera (receptor aperture) in fixed position.
Photography of the example of such a system is depicted in Figure 4.1.

In paper [68] is introduced BRDF measurement system without any mechanical element.
This system consists of multiple cameras mounted on a hemispherical gantry. Each camera
is equipped with a flash unit, see Figure 4.2.

Minimalistic concept of above approach led to an LED-only BRDF measurement device,
see Figure 4.3. The device consists of an aluminum hemisphere with many embedded LEDs,

26
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Figure 4.1: Left: A photograph of BRDF measurement system. Right: The measurement target,
a sphere painted with car paint [30].

Figure 4.2: The BRDF measurement device consists of 151 digital consumer cameras mounted on
a hemispherical gantry [68].

all pointing toward the center of the hemisphere. These LEDs are used eider as the light source
and the photoreceptor. A lens is used with each LED to improve the optical performance.
During operation, each LED is turned on momentarily. While one LED emits light, all others
measure the reflected light from the sample. Next, a different LED is chosen to emit light,
and the remaining ones (including the previous emitter) measure the reflected light.

Figure 4.3: An LED-only BRDF measurement device [4].

4.2 Industrial Measurement

Industrial applications require the efficient assessment of surface appearance. Product manu-
facturers need to test whether the products they are producing (paint, plastic covering, paper,
etc.) meet design criteria. Because of the time and expense of a full BRDF measurement,
devices have been developed that characterize surface appearance with a small number of
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measurements. Unlike high accuracy BRDF measurement devices, these devices are avail-
able on the market, see Figure 4.4. Broadly speaking, two classes of devices are common:
one for color assessment and another for haze or gloss.

Figure 4.4: Left: Multi Gloss 268 [26]. Right: Minolta BC–10 Colorimeter [13].

Common color instruments are colorimeters that return color values reflected by materials
under standard illuminants in standard color spaces (i.e. CIE LAB). To measure the diffuse
color and the albedo, the illuminat is a hemisphere over the sample patch. Receptor aperture
is positioned above the surface and directed to measure reflected light under 8 ◦ from direction
of the surface normal.

Industrial devices designed to measure qualities such as gloss and haze are called glossme-
ters. The measurement of the specular gloss consists of comparing the luminous reflectance
from tested specimen to that from a gloss standard, under some geometric and spectral
conditions well defined by national or international standards e.g. ISO 2813 [22, 19].

Those standards usually prescribe the measurement to be taken at angles 20 ◦, 60 ◦ and 85 ◦

to the surface normal, because these degrees of specular gloss measurements offer numerical
values which are roughly linearly correlated over a range of values to perceived gloss of high–
gloss, medium–gloss and low–gloss surfaces, respectively. The numerical gloss values ranges
from 0 to 100.

4.2.1 Virtual Glossmeter

Measurement of light reflection from the surface of the material was of the concern even before
the computer graphics started to deal with photorealistic rendering. Gloss measurement is
already in the 30’s of the twentieth century dealt by Hunter, who categorized gloss into several
groups [35] and helped design the first standards.

American Society for Testing and Materials (ASTM) then established standard measure-
ments of gloss and haze. An overview of these appearance measurement standards is offered
in the paper [88], where these standards and simple appearance measurements were applied
to realistic image synthesis. Given existing computer graphic reflection models such as the
Phong model, the Ward model and the Cook-Torrance model, a correspondence were in-
dicated between the parameters of these models and appearance measurement scales such
as gloss and haze. This provides an appearance based rational and a simple measurement
scheme for setting the parameters of these models. Main contribution of the paper [88] is
an introduction of the algorithm to the virtual measurement of gloss from BRDF, fulfilling
ASTM standards.

Devised algorithm of the virtual glossmeter computes gloss value of the virtual surface
using assigned BRDF under specific angle. Gloss values are directly dependent upon the
measured flux reflected off the surface and passing through the receptor aperture. The in-
tegration of this flux begins by subdividing the source aperture. For each sample point on
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the source, the receptor aperture is subdivided. Figure 4.5 shows an example of the flux
due to one subdivided source element (cell) passing through the receptor. After this flux is
determined, the next source cell is chosen and the process is repeated.

Figure 4.5: Left: Subdivision of glossmeter apertures using the 60 degree specular gloss. The
source and receptor apertures are oriented in directions Θi and Θr, 60 degrees down from the surface
normal, N̂ , in the plane of incidence. Right: Flux passing through receptor aperture due to one source
aperture subdivision. Aperture sizes are not to scale [88].

The gloss value G is computed by the following formula:

G = 100

∑K
k=1

∑J
j=1 ρ(ŝj , d̂k) dΩSj dΩDk∑K

k=1

∑J
j=1 F (n, ŝj)δ(mirror(ŝj)− d̂k) dΩSj

, (4.1)

where dΩSj = ŝj · N̂ dωSj , dΩDk = d̂k · N̂ dωDk , F is the Fresnel reflectivity for unpolarized
light, n is the refractive index of the standard, and mirror(ŝj) is the unit mirror direction
vector of ŝj . Solid angles dωSj and dωDk are subtended by jth cell of the source at certain

point of the sample and kth cell of receptor aperture, respectively. ŝj and d̂k are the unit
direction vectors (from certain point of the sample) pointing toward Sj and Dk, respectively.
The mirror direction vector can be computed with:

mirror(ŝj) = 2(ŝj · N̂)N̂ − ŝj . (4.2)

The delta function is:

δ(v) =

 1 if |v| < ε

0 if |v| ≥ ε
. (4.3)



Chapter 5

Project of Dissertation

In this chapter we define and discuss our major goals and research interests. We also define
some problems in material modeling and try to suggest solutions to these problems.

5.1 Research Interests and Goals

Material appearance of the scene objects is the basis of the image synthesis in computer
graphics. Besides the image synthesis, there are lots of another interesting applications of
the material appearance modeling. For example in the paint and coatings industries, designers
are required analyze many design variations in a short time and at low costs [24, 18]. To help
them a computer graphics program can be used that allows the user to interactively adjust
the surface reflection properties of a paint and visualize the appearance of that paint on a
three dimensional surface [48].

Another utilization of the digital appearance modeling of materials is in the field of the
digital preservation of the cultural heritage. For example in [21] is introduced a method for
rendering of the Japanese lacquer ware, a prominent Far East Asian handicraft art.

The major goal of our research is measurement and acquirement of the data that repre-
sent the optical properties of real materials, analysis of these data and the proposal of the
method to render plausible appearance of the real materials. Problem of the data acquire-
ment is outlined in chapter 4. In order to analyze the material appearance it is reasonable
to decompose independent optical properties (e.g. diffuse and mirror reflection are indepen-
dent according to the models from chapter 3) and threat each separately. The evaluation
of the material appearance may be accomplished by observation or physical analysis of the
examined material.

Rendering a digital image requires computing individual pixel colors, representing the
appearance of an object as seen from the viewer. The finite resolution of the image, as well
as the great variability of object colors even for neighboring locations, make it impossible
to define a pixel color as simply the color of the visible object at that pixel. The essential
operation of the rendering is to determine how a given point in space will appear from the
view point: either this determination is carried out for all elements of a scene, or it is only
performed for elements that are visible in the image [11].
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Major areas of our ongoing research are:

• Editing of the material appearance of the objects depicted in 2D images

• Transport of the material appearance between objects depicted in 2D images

• Implementation of the virtual goniospectrophotometer

• Measurement of gloss and albedo of real materials and creation of the sufficient BRDF
based on these data

• Analysis of the metallic flakes and rendering of the sparkling effects

• Industry based modeling and rendering of the spectral effects

5.2 Solutions and Techniques

In the following sections we overview main problems and suggest possible solutions to the
goals of our research.

5.2.1 Appearance editing

To allow user to edit such complex datasets of the measured spatially varying BRDF (SVBRDF)
is not acceptable. SVBRDF is BRDF measured at multiple surface coordinates of the sam-
ple. To make editing easier a framework was introduced in paper [57]. In this system, a
user specifies a small number of editing constraints with a 3D painting interface which are
smoothly propagated to the entire dataset through an optimization that enforces similar edits
are applied to areas with similar appearance.

In [44] is the ”inverse shade tree” (see Figure 5.1) created from measured data. The leaves
of these tree are sampled 1D and 2D functions that capture both the directional behavior
of individual materials and their spatial mixing patterns. To edit the material appearance
users change these functions. A rendering shading tree representing multiple BRDFs with
possibility to combine them was devised by Ďurikovič and Kolchin [Durikovic02renderingof].
This approach was later extended to enable the user interactive editing of BRDF stored in
shading tree.

A technique that can be useful in editing and transforming material appearance of the
object depicted in single image is called appearance manifolds. Appearance manifold is a
manifold which points are attributed to the particular appearance property. This technique
was used for example in editing material appearance attributed to weathering of the object
depicted in single 2D image [75, 86].

5.2.2 Material appearance transfer from the object depicted in a image to
another object

To our knowledge no attempt of appearance transfer between images have been made so
far. However, several works are devoted to the estimation of the optical parameters from
the observation of how the material surface reflects light [81, 70, 92, 67]. Methods based on
image analysis may require multiple images [70, 92] or scene geometry [7, 6].
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Figure 5.1: Left: Decomposition of the appearance and optical properties of an anisotropic material
into the shade tree [44]. Right: Decomposition of a material into BRDF components [18].

Work [16] devoted to classification of reflectance properties of surfaces based on the pre-
dictable statistical structure of real-world illumination requires single monochrome images.
Method in [65] estimates the surface radiance function from single images. This method is
based on the Gauss map between the surface and a unit sphere and is applicable only when
the light source and viewer directions are approximately equal.

To analysis of the optical properties of the materials such as plastics a reflection model
so-called ”dichromatic model” can be use [41]. This model assumes that the color of the light
source is different from that of the surface material. The resulting color of light reflected from
the surface of the material is then a weighted sum of material color and light color. By color
histogram analysis of illuminated object can be the diffuse color and its surface roughness
which affects the perception of gloss estimated [81, 53].

In analysis of the reflected light is useful to distinguish diffuse and mirror component [3].
In the field of computer vision there are several methods to separate the mirror component
from the resultant intensity of reflected light. Some use a polarizing filter, other multiple
images [46], but there are also methods [73, 71, 78, 38] which operate just on a single image
under assumption that the lighting model is dichromatic. One of the first methods using
dichromartic model was based on an analysis of the distribution of colors in RGB space,
which results in two clusters. These clusters represents a specular component and a diffuse
component of the reflected light [73, 42]. In [71] is introduced fast and robust method to sep-
arate specular component of color image, which is based on two–dimensional representations
of color, where diffuse color is represented by the color with maximum tone. Method that
uses a projection of the image colors toward the point with the lowest observed intensity is
described in [78]. This projection is in RGB space along the direction of the color vector of
the illumination color.

Given that the reflection of light from the object depends on the orientation of the surface
normals, the knowledge of the surface normals can help in analyzing the reflectance. There are
several algorithms [15, 54, 93, 60, 43] to estimate the shape from a single image (shape from
shading), although in general there is no clear solution to this problem. First, the problem was
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formulated as a problem of finding the solution of a nonlinear first-order partial differential
equation called the brightness equation [32]. Later it was shown that from a single image one
can find estimation of the orientation of normals up to an orthogonal transformation.

In [51] we have proposed a method to transport the appearance from one object depicted
in single image to another object depicted in another image. In this approach both images are
decomposited to their specular and diffuse component. Diffuse component of both images
serves as input data to a shape from shading algorithm to recover surface normals of the
objects. Subsequently each pixel’s specular and diffuse component of the second image is
changed according to recovered normals and pixels of the first image. See chapter 6 for more
details.

Accuracy of the appearance transport relay on the shape from shading algorithm. In-
accuracy of surface normal recovery causes noise in diffuse component and displacement of
the specular highlight. First problem can be solved by the linear regression since intensity
of the diffuse component is linear function of (N · L), see equation 3.18. Second problem is
more complex. It may be solved by determination of the intensity function of (N ·H) from
highlight peak (in highlight peak H = N) through specular highlight in L–V plane.

5.2.3 Virtual goniospectrophotometer

One of our goals is to design and implement a computer program devoted to the measurement
of gloss and SPD of the reflected light from samples represented by BRDF. In practice, these
measurements are performed by devices from chapter 4 using real material samples. Aim
of the program is to perform these measurements on virtual samples represented by BRDF.
These measurements can be compared with actual measurements on real samples and then
precision of computer representation can be evaluated [76].

Goniospectrophotometer should consist of a standard light source and receptor (luminous
flux sensor). Sample of the material input could be represented by a BRDF (in case of
nonhomogeneous surface by SVBRDF). Users shoud be able to change the area and location
(with respect to the sample surface) of the light source and the receptor. These settings allow
of measurement with different standards.

Calculation of the luminous flux can be performed by splitting of the light source and
receptor aperture. Then, for each cell can be calculated luminous flux, which is reflected from
the sample and then passes through the receptor cell, see Figure 4.5.

The real measuring devices such as glossmeters can not measure the light reflection at a
single point of the sample, but measure reflection in a small region. For nonhomogeneous
surfaces such as metallic or pearlescent varnishes has a sample different BRDF in each point.
It is therefore necessary to divide the sample into smaller parts and make a calculation in
each of its part. Functionality of the program should be extended to implementation of the
virtual colorimeter.

5.2.4 Measurement of gloss and albedo

One utilization of the program mentioned above is measurement of the albedo and the gloss
at angles 20 ◦, 60 ◦ and 85 ◦ to the surface normal performed on analytical BRDF such as
Cook–Torrance or Ward model. These three measurements of gloss do not provide enough
data to construct whole BRDF of the measured material. However, in general some attributes
of BRDF may be dependent on gloss values. For example measurements in [10] suggests that
there is certain dependence between DOI and gloss under 85 ◦. Therefore we suppose that
majority of the materials is able to approximate by some analytical BRDF with parameters
attributed to gloss values.

If this analytical BRDF based on the standard measurements exists, then this BRDF may
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be acquired by the reparametrization of known analytical model. Multiple measurements of
the gloss may be performed by virtual goniospectrophotometer with different parameters of
BRDF of the known model. These measurements may be performed for example in space
from Figure 3.10. Thus rough approximation of the material’s BRDF may be acquired just by
measurements using commercial devices such as the glossmeter and colorimeter (see Figure
4.4). This should be possible because reflected light measured by the glossmeter under grazing
angles is more dependent to BRDF attributes like DOI, while light reflection under steeper
angles is more related to the diffuse reflectance.

5.2.5 Sparkling analysis and rendering

Paint coatings containing metallic flakes exhibit sparkling and depth effects [17, 85]. The
light scattering within the system of metal flakes or particles creates the sparkling and glare
effects with radial streaks of light around high intensity particles, see Figure 5.2.

Figure 5.2: Sparkling effect [25].

The ray reflected by a flake can reach observer either directly (in one scattering), or
after several scatterings (by other flakes or by the substrate or by the paint-air boundary).
However, each reflection substantially attenuates light, thus it is the flakes seen ”directly”
that are the brightest; it is them that look like sparkles [72].

Sparkles can be represented by the texture. The idea of simulation of the sparkling is
to calculate statistical characteristics of fluctuations due to scattering by flakes and then
reproduce the paint texture by superimposing random fluctuations on the image obtained by
standard rendering.

5.2.6 Rendering of the spectral effects

Chromatic dispersion causes the spatial separation of a white light into components of dif-
ferent wavelengths [52]. Spectral variation of the index of refraction is what causes different
wavelengths of light to bend a different amount when they pass through glass, and causes
white light to split into a rainbow of colors in a prism, see Figure 2.1.

Dispersion is rendered by following separate ray paths for different wavelengths, rather
than following one geometric path for R, G, and B [20, 29].

Intense color can appear when light passes through a thin film, such as an oil slick on
water on the street after it rains. In this instance, thin is defined as a length on the order of
the wavelength of light. Thin film interference (see Figure 5.3) occurs when the thickness of
the film is on the order of a wavelength of light. The phase of a wave, that is, where it has
peaks and valleys, switches when light reflects off a boundary from lower to greater index of
refraction, but does not change when reflecting from greater to lower index of refraction.

Rendering of the spectral effects require spectral data (e.g. sampled SPD function). Since
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Figure 5.3: Left: Multiple reflection on single layer surface, where r denotes path of reflected ray,
t denotes refracted path. Right: Chrome oxide thin film interference with increasing thickness from
100 nm to 400 nm [20].

graphics hardware utilizes just RGB color space, then rendering of the spectral effects on GPU
is not straightforward, and requires more sophisticated approach.



Chapter 6

Preliminary Results

In this chapter we preset results of our research focused to the material appearance transfer
between two objects depicted in single 2D images. Our work has been introduced in [50]. In
the following section we describe key ideas of our method and overview some of the results
we achieved.

6.1 Material appearance transfer between images

Presented method is devoted to the appearance transformation of an object depicted in a
single image. The goal is to achieve appearance of material depicted in another image called
material image. Although, for the sake of simplicity we assume that depicted objects are lit
by the white light source, the method [80] to estimation of the color of the illuminant could
be used in general case.

6.1.1 Separation of the Specular Component

In the process of the reflection analysis it is reasonable to separate the specular and diffuse
reflection [63]. Inspired by papers [79] and [77] we devised simple solution to the problem of
specular–diffuse separation.

Let us consider the dichromatic reflection model, where the color of highlight is a linear
combination of specular and diffuse color. This model proves adequate for most materials
such as inhomogeneous dielectrics. Under assumption, that the scene is lit by the white
source and the diffuse color of the object is not desaturated, the diffuse component can be
obtained by the projection along the illumination direction. Color of pixels in the specular
highlight region of the image creates an highlight cluster in RGB color space, see Figure 6.1.

Maximum chromaticity is defined by the following formula:

σ(x) =
max(Ir(x), Ig(x), Ib(x))

Ir(x) + Ig(x) + Ib(x)
, (6.1)

where Ir(x), Ig(x) and Ib(x) are R, G and B components of the pixel at the image coordinates
x. Let d is a vector in the RGB space defined as (Ir(x), Ig(x), Ib(x)), where x are coordinates
of the pixel of the object in the image with σ(x) = max{σ(y)|y ∈ Ω}. Ω is a region in the
image where the object is inhered in. At coordinates x lies its most desaturated pixel. Let s
is a vector in the RGB space defined as (1, 1, 1) representing the direction of the illumination
color. Diffuse component c(x) of the pixel at x with color p(x) in the highlight cluster is
then computed as the intersection of the line in the direction s passing through p(x) with the
line in the direction d passing through point (0, 0, 0). In other words, the diffuse component
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of the pixel at the coordinates x with the color p(x) is given by the following formula:

c(x) = p(x) + s
(− p(x)× d) · (s× d)

|s× d|2
. (6.2)

Figure 6.1: Color histogram in the RGB space.

Specular component can be derived by p(x) - c(x). Figure 6.2 shows an image of the
sphere on top and two images obtained by decomposition into the diffuse and specular com-
ponents.

Figure 6.2: Original image and its diffuse and specular component image.

As clamping in the color space produces saturation of the color, it is reasonable to use
one of the HDR color formats such as RGBE.
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6.1.2 Shape from Shading

To calculate the normal vector N(x) at surface point from an image of a surface a shape from
shading algorithm can be utilized [90].

Let I(x) is a greyscale image of the diffuse component, then according to Lambertian
reflection it can be written as

I(x) = η(N(x) · L), (6.3)

where L is the illumination direction and η is the composite albedo. Obtaining of the 3D
shape from a single shaded image is ill-proposed problem [61], therefore most of the algorithms
incorporates regularization. The common assumption about surface shape is that the surface
is locally spherical. The recovered shape can be expressed as depth Z(x) or surface normals,
where Z directs toward the camera. An iterative method based on the discrete approximation
of the surface gradients is proposed in [84].

Horn and Brooks have proposed to use the unit normal rather then the gradient [8]. This
method is based on the minimization of

∫
Ω (I(x) − N(x) · L)2 dx, where Ω is a region in

xy–plane.

Some shape from shading algorithms require known illumination direction. In papers
[94, 58] are discussed some methods to estimate the illumination direction or surface albedo.
The azimuth of illuminat in paper [45] is estimated as

τ = arctan
E{Iy}
E{Ix}

, (6.4)

where Ix and Iy are the first-order partial derivatives of image intensity with respect to the
local spherical coordinates, and the expectations are taken over the whole region. Since it
is not clear how to evaluate the derivatives of image intensity with respect to local spherical
coordinates, in our implementation of this method, we computed Ix and Iy as the partial
derivatives of image intensity with respect to image coordinates.

The slant angle γ of the illuminant is computed according [94] as root of the polynomial

0 = 05577− E{I }√
E{I 2}

+ 0.6240cosγ + 0.1882cos2γ − 0.6514cos3γ −

−0.5350cos4γ + 0.9282cos5γ + 0.3476cos6γ − 0.4984cos7γ, (6.5)

where E{I } and E{I 2} are the ensemble averages of the image intensities and the square of
the image intensities, respectively.

We adopted the iterative scheme for minimisation of a functional, where the surface
normal is updated by taking a local average, and adjusting it either toward or away from
the source. Although for the images of perfect sphere these methods work quite well, for
relatively complex images results are not very encouraging.

6.1.3 Transport of the Appearance

Proposed method requires two input images, first one is the material image I1(x), depicting
the object with required material appearance. Second input image is the object image I2(x)
it is the original image of object which some appearance we would like to change. The goal of
this method is to change pixels of the object in original image I2(x) to achieve the material
appearance of the object depicted in material image I1(x).

The color vector p(x) of the pixel of the object at the coordinates x can be described as
follows:

p(x) = (N(x) · L)d + wi(x)s, (6.6)
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where d is the diffuse color vector, s = (1, 1, 1) is the illumination color, H is the bisector
vector between the light and the viewing direction, and wi(x) is the function of N(x) ·H.
First term represents the diffuse component of the pixel at the coordinates x, and second term
represents the specular component. Applying the decomposition described above to each of
the input image produces a specular component image and a diffuse component image. To
estimate the geometry of both objects depicted in input images a shape from shading method
is used. Results of proposed steps are captured in Figure 6.3.

Figure 6.3: Steps required in the process of the transfer.

To estimate the surface normals, method described in [8] have been used. Let N1(x) is
the normal map of the object in the material image I1(x) and N2(x) is the normal map of the
object image I2(x). If x1 are coordinates of the most brightest pixel in the specular component
image of the material image and x2 in the specular component of the object image. Then the
bisector vector H1 can be approximated by N1(x1) and H2 can be approximated by N2(x2).
Let L1 represents illumination direction in the material image and L2 in the object image.
L1 is obtained as the reflection L1 = 2(V ·H1)H1−V and similarly L2 = 2(V ·H2)H2−V,
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where V = (0, 0, 1).

Let A and B are tabular representations of a mapping form R to RGB space

A = {(N1(x) · L1, d(I1(x))) | x ∈ Ω1}, (6.7)

B = {(N1(x) ·H1, s(I1(x))) | x ∈ Ω1}, (6.8)

where d(I1(x)) is diffuse component of I1(x), s(I1(x)) is specular component of I1(x) and Ω1

is region in I1(x) where object is depicted. Data structure for A and B stores pairs of the
dot product and color. For each pixel coordinates x of the object in the material image, the
dot product N1(x) · L1 and the diffuse component d(I1(x)) are stored into A. Similarly, for
each pixel coordinates x of the object in material image the dot product N1(x) ·H1 and its
corresponding specular component s(I1(x)) are stored into B.

Transfer of the material appearance is achieved by changing pixels colors of the object
in I2(x). For each pixel coordinate x of the object in I2(x) we determine the d̂(x) and
ŝ(x). We select two elements (a1, c1) and (a2, c2) from A. The first element (a1, c1) where
a1 = max{a|a ≥ N2(x) · L2, (a, c) ∈ A} is the pair which has first component closest upper
to N2(x) ·L2 while the second element (a2, c2) where a2 = min{a|a ≤ N2(x) ·L2, (a, c) ∈ A}
has its dot product component closest lower to N2(x) · L2. The color d̂(x) is then deffned
as the linear interpolation of the color components c1 and c2. The color ŝ(x) is defined as
the linear interpolation of color components c3 and c4 of two elements (b1, c3) and (b2, c4)
from B, b1 = max{b|b ≤ N2(x) ·H2, (b, c) ∈ B} and b2 = min{b|b ≥ N2(x) ·H2, (b, c) ∈ B},
respectively. Then pixel color of the object at coordinates x in the original image is changed
as follows:

I2(x) = d̂(x) + ŝ(x). (6.9)

6.1.4 Results

Proposed method was tested on multiple synthetic images using Phong and Cook–Torrance
illumination model. Best result has been obtained in the material image I1(x) with a single
sphere and with the same light and viewer direction.

Figure 6.4 shows a material appearance transfer from the yellow sphere with the shininess
coefficient 30 to the blue teapot with the shininess coefficient 100. The direction of the light
in case of the sphere was (0, 0, 1) and estimation was L1 = (−0.002,−0.001, 1). In the case
of the teapot the light direction was (0,−0.4, 1) and the estimation of the light direction was
L2 = (−0.02,−0.18, 0.983). Inaccuracies in normal estimations was affected by errors in the
light direction estimations of the Zheng & Chellappa’s method.

Figure 6.5 shows the result of the appearance transfer from the sphere with the metal-
lic car painting to the yellow teapot. Estimation of L1 = (−0.16,−0.136, 0.98) and L2 =
(−0.0768, 0.252, 0.96). The Horn and Brooks algorithm tends to over smooth the recovered
normal map, which leads to loosing of the boundaries. The problem of improper estimation
of the geometry of the object in the material image I1(x) leads to certain noise in the result.
This noise is due to errors in the recovered normal map which leads to the constructions of
structures A and B, where some element may have the dot product component higher then
some other elements, but the color components consists of the color with lower intensity.

Figure 6.6 shows transfer of the metallic material to the car bonnet. Average relative
error of the pixels of the bonnet region in our resulting image compared with rendered image
was 14.837% of the transfer depicted in first row and 11.989% in second row.

The bottleneck of this method is the inaccuracy of the classic shape from shading algo-
rithms. There can be some improvement accomplished by involving a user interaction to the
shape recovering process as proposed in [91]. An attempt to decrease the dependency on
the shape from shading algorithm of the proposed appearance transformation method may
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Figure 6.4: Material transfer from yellow sphere to the teapot. a) The material image I1(x). b)
The object image I2(x). c) The material appearance of the object in I1(x) transfered to the object
in I2(x). d) The original object from I2(x) rendered with the same material and scene parameters as
the parameters of the object in I1(x).

also increase the accuracy. Another improvement of the proposed method may be achieved
by generalisation of the assumption of the illumination and the object’s surface composi-
tion. Incorporating an environment map analysis may allow appearance transformation of
the material surface which reflects surroundings.
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Figure 6.5: Transferring sparkling material from the sphere to the teapot. a) The material image
I1(x). b) The object image I2(x). c) The material appearance of the object in I1(x) transfered to
the object in I2(x). d) The original object from I2(x) rendered with the same material and scene
parameters as the parameters of the object in I1(x).

Figure 6.6: a) Source images. b) The target image. c) Source material applied onto the bonnet of
the car. d) Bonnets rendered with the same material parameters as the parameters of the object in
source images.
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[21] Ďurikovič, R., Kolchin, K., and Ershov, S. Rendering of japanese artcraft. In
Short Presentations of EUROGRAPHICS Conference (Braunschweig, Germany, 2002),
pp. 131–138.
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[24] Ershov, S., Ďurikovič, R., Kolchin, K., and Myszkowski, K. Reverse engi-
neering approach to appearance-based design of metallic and pearlescent paints. Vis.
Comput. 20, 8-9 (2004), 586–600.

[25] Ershov, S., Kolchin, K., and Myszkowski, K. Rendering pearlescent appearance
based on paint-composition modelling. Computer Graphics Forum 20, 3 (2001), 221–238.
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[71] Schlüns, K., and Teschner, M. Fast separation of reflection components and its
application in 3d shape recovery. In Proc. 3rd Color Imaging Conference (Springfield,
VA, USA, 1995), IS&T, pp. 48–51.

[72] Sergey V. Ershov, Andrei B. Khodulev, K. V. K. Simulation of sparkles of
metallic paints. In Proceeding of Graphicon (1999), pp. 121–128.

[73] Shafer, S. A. Using color to separate reflection components. Color Research & Appli-
cation 10, 4 (1985), 210–218.

[74] Snyder, W. C., Wan, Z., and Li, X. Thermodynamic constraints on reflectance
reciprocity and Kirchhoff’s law. Applied Optics 37, 16 (1998), 3464–3470.

[75] Su Xuey, Jiaping Wang, X. T. Q. D., and Guo, B. Image-based material weath-
ering. Computer Graphics Forum 27, 2 (2008), 617–626.

[76] Takagi, A., Takaoka, H., Oshima, T., and Ogata, Y. Accurate rendering tech-
nique based on colorimetric conception. In SIGGRAPH ’90: Proceedings of the 17th
annual conference on Computer graphics and interactive techniques (New York, NY,
USA, 1990), ACM, pp. 263–272.

[77] Tan, P., Quan, L., and Lin, S. Separation of highlight reflections on textured surfaces.
In CVPR ’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Washington, DC, USA, 2006), IEEE Computer Society,
pp. 1855–1860.

[78] Tan, R. T., and Ikeuchi, K. Reflection components decomposition of textured sur-
faces using linear basis functions. Computer Vision and Pattern Recognition, IEEE
Computer Society Conference on 1 (2005), 125–131.



Bibliography 48

[79] Tan, R. T., and Ikeuchi, K. Separating reflection components of textured surfaces
using a single image. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2 (2005), 178–193.

[80] Tan, R. T., Nishino, K., and Ikeuchi, K. Color constancy through inverse-intensity
chromaticity space. J. Optical Society of America A 21, 3 (2004), 321–334.

[81] Tominaga, S., and Tanaka, N. Estimating reflection parameters from a single color
image. IEEE Comput. Graph. Appl. 20, 5 (2000), 58–66.

[82] Tominaga, S., and Wandell, B. A. Natural scene–illuminant estimation using the
sensor correlation. In Proceedings of the IEEE (New York, NY, USA, 2002), Institute
of Electrical and Electronics Engineers, pp. 42–56.

[83] Torrance, K. E., and Sparrow, E. M. Theory for off-specular reflection from
roughened surfaces. JOSA 57, 9 (1967), 1105–1114.

[84] Tsai, P. S., and Shah, M. Shape from shading using linear approximation. Image
and Vision Computing 12, 8 (1994), 487–498.
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