05

MULTIDIMENSIONAL DATA II

RECOLLECTION

SUBSETTING Scatterplots, hyperslice,...

EMBEDDING Color, glyphs, worlds-within-worlds,...

REDUCTION SOM, MDS, PCA, RadViz,...

AXIS RECONFIGURATION

AXIS RECONFIGURATION

LEAVING CARTESIAN COORDINATES

EXAMPLE: MONGE PROJECTION

MOTIVATION

USUAL $ND \rightarrow 2D$ PROJECTION Works only for small *n* Ambiguous Point \leftrightarrow point

SIMPLE RECONFIGURATION

 $\mathsf{POINT} \leftrightarrow \mathsf{LINE}$

SCALABLE TO LARGE N

UNAMBIGUOUS

PRESERVES SIMILARITIES

HARDER TO READ

RECOLLECTION: GLYPHS

STAR GLYPH / STAR PLOT

STAR PLOT EXAMPLES

STAR COORDINATES

PARALLEL COORDINATES

ALFRED INSELBERG POINT \leftrightarrow LINE DUALITY

POINT-LINE DUALITY IN PAR.COORDS.

VISUAL ANALYSIS IN PAR.COORDS.

CORRELATIONS, PATTERNS

VISUAL ANALYSIS IN PAR.COORDS.

GROUPS

VISUAL ANALYSIS IN PAR.COORDS.

OUTLIERS

INTERACTION WITH PAR.COORDS.

AXIS ORDER, AXIS ORIENTATION BRUSHING Combinations of per axis brushes

PARALLEL COORDINATES PROPERTIES

SCALES UP TO *N* = 10 ... 20

PARALLEL COORDINATES PROPERTIES

GRAPHICALLY INTENSE One item \rightarrow thousand pixels Overplotting, low capacity

16.000 SAMPLES

PARALLEL COORDINATES PROPERTIES

GRAPHICALLY INTENSE One item \rightarrow thousand pixels Overplotting, low capacity

100.000 SAMPLES

MODIFICATIONS

PARALLEL SETS

CATEGORICAL DATA

PARALLEL AXES

COLORING BY ONE ATTRIBUTE

TITANIC DATA \rightarrow

ANDREWS PLOT

COORDINATE SYSTEM BASED ON ORTHOGONAL TRIGONOMETRIC FUNCTIONS (LIKE FOURIER)

 $F_i(t) = X1_i / SQRT(2) + X2_i * SIN(t) + X3_i * COS(t) + X4_i * SIN(2t) + X5_i * COS(2t) + \dots$

NO SEMANTICS IN X,Y

ORDER OF DIMENSIONS SUPERIMPORTANT

ANDREWS PLOT

SUMMARY

ORTHOGONAL COORDINATE SYSTEMS USE UP SPACE

RECONFIGURATION OF AXES OFFERS MORE DIMENSIONS

RECONFIGURED COORDINATES SYSTEMS MAY Be non-intuitive (e.g. par.coordinates, andrews plot) Require learning Be abstract (e.g. trigonometric functions)

06

TIME-DEPENDENT DATA

HISTORY

CHARLES MINARD, 1869 NAPOLEON CAMPAIGN TO RUSSIA IN 1812

MOTIVATION

"PREDICTION IS VERY DIFFICULT, ESPECIALLY ABOUT THE FUTURE"

UNDERSTANDING TEMPORAL RELATIONS HELPS PREDICT FUTURE

DETECTING EVENTS HELPS LEARN FROM THE PAST AND FIND RELATIONS

References: Aigner et al. : Visualizing Time-Oriented Data - A Systematic View

STRUCTURE OF TIME AXIS

TIME POINTS VS. TIME INTERVALS

GRANULARITY seconds, weeks, ...

LINEAR TIME E.g. average income over last 50 years

CYCLIC TIME E.g. website visitors over a week

BRANCHING TIME E.g. project development

SINGLE DIMENSION E.g. ocean level over past 50 years

MULTIPLE DIMENSIONS

Multiple dimensions in different time points E.g. temperature, humidity, wind speed measured at different (not the same) time

MULTIDIMENSIONAL

Complete multidimensional snapshots at different time points

E.g. credit card transactions

ENTITIES

SINGLE ENTITY

Various temporal aspects of 1 entity E.g. health monitor of a patient

MULTIPLE ENTITIES

Track development of each entity over time e.g. GDP of European countries over years

UNKNOWN ENTITIES

No entity match between timesteps E.g. anonymous censuses from different years

UNCERTAINTY

USUALLY ABOUT FUTURE DATA

LEVEL OF UNCERTAINTY

PROBABILITY (0..1)

VARIANCE

DENSITY DISTRIBUTION

FREQUENCY AND DYNAMICS

HOW OFTEN DATA CHANGES?

WHAT IS THE VARIATION OF DATA?

WHEN WAS THE LAST UPDATE

E.G. TRAFFIC INFORMATION, WEATHER INFORMATION

GOALS OF TEMPORAL VISUALIZATION

COMPARE DATA IN DIFFERENT TIMESTEPS

DIFFERENCES BETWEEN SPECIFIC TIME STEPS

Mon Nov 21 03:50:00 MST 2011

USGS National Earthquake Information Center

DETECT EVENTS

EVENT = WHEN A SIGNIFICANT CHANGE HAPPENS

DETECT PATTERNS IN 1 ATTRIBUTE

INCREASE, DECREASE, REPEAT, JUMP, DROP, ...

DETECT LAYERED PATTERNS

DETECT ATTRIBUTE RELATIONS

ARE TWO VARIABLES RELATED IN TIME?

EXAMPLE TECHNIQUES

THEME RIVER

HISTOGRAM IN DIFFERENT TIME STEPS. SPLINE INTERPOLATION OF VALUES => AREAS

THEME RIVER CLONES

http://lastgraph.aeracode.org/

THEME RIVER CLONES

http://babynamewizard.com/voyager

GANTT CHART & MODIFICATIONS

	11.03	12.03	1.04	2.04	3.04	4.04	5.04	6.04
Preparation and Planning								
Develop project proposal								
Approve project proposal		\bullet						
Recruit project team								
Development and Test								
Specify detail requirements								
Develop prototype								
Approve prototype								
Develop beta version								
Test beta version								
Apply final corrections								
Approve final version							•	
Implementation								
Train users								
Roll-out final version								

GANTT CHART MODIFICATIONS

TWO-TONE PSEUDO COLORING

SPIRAL GRAPH

TIME AXIS AS A SPIRAL. CYCLE LENGTH IS A PARAMETER => PERIODICITY CAN BE REVEALED

Fig. 1. Different visual representations of a time-oriented dataset describing the number of influenza cases over a period of three years – left: Time series plot (periodic pattern is difficult to discern), center: SpiralGraph encoding 27 days per cycle (improperly parameterized – periodic pattern is hard to see), right: SpiralGraph encoding 28 days per cycle (properly parameterized – periodic pattern stands out).

BRANCHING TIME

www.digibarn.com/collections/posters/tongues/

Mother Tongues

Tracing the roots of computer languages through the ages Ann this half of the world's applies rangels, most of the 2,000 pile computer programment to provide the other includenced or exhibits the powerhouses CrC+4, Y and Back, Cobel John, and other moders source codes dominations with my hand the of close languages are unrelied as for the .

An existing ad letter for Angly network advector is leaded approved. If you will not the to a new on as and document, the import of stands software. They're combine the states of all the dowleases in a sector of poders all if them in them energy they take it import for use. An angly the mean endergence are Adv, AEL, Suth precisioneer of GL Lap. Observes Smalleds, and Samola. Code-relater Strates Dispect Relation 1 Settements tablet observation, is working with the Computer Knowy Maximum in Salacon Withing to execute a table, in our working with the Computer stars were related to solve the settement of the minded of Math Interface and the Vertification and economic from these shaped bismory and stars in Sacona Applications (Werkerstein, 2004), and economic from these shaped bismory and stars (Sacona Applications). They'l provide the rest material for solvere an observation, the stars, Theoreman applications are shaped as stars with these stars and several solvers and the tensors. They are applied at the stars the stars working with the set of the stars and the several solutions and the stars the stars of the

TIME-DEPENDENT SCATTERPLOTS

INK STAIN METAPHOR

SUMMARY

DATA TYPES

One or multiple attributes over time One or multiple (or no known) entities over time

VISUALIZATION OF TIME-DEPENDENT DATA Temporal trends (rise, decline, periodicity) Attribute correlation over time (helps prediction) Event detection (outlier in temporal domain)