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Abstract. This paper considers planar cubic Bézier curves in three-dimensional Minkowski
space. We shall consider the conditions for the control points A,C,D,B of the Bézier curve
such that the Bézier segment is pointwise space-like. For the control point C, we shall give a
geometrical interpretation of the feasibility condition provided the rest of the control points are
fixed.
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1. Introduction

We will continue in the spirit of the works [3, 6] where the set of admissible points C is de-
scribed for quadratic space-like Bézier curves. In this paper, we show the set of admissible
points for planar cubic space-like Bézier curves. At first, we recall some facts about Minkowski
space, more on this topic can be found in the books [1, 2]. Then, we will show, which methods
and propositions used in the quadratic case can be used in cubic case. At the end, we give a few
specific examples.

2. Minkowski space, Bézier curves and their properties

Pseudo-Euclidean space, denoted by Rn
p , n ∈ N = {1, 2, 3, . . . }, p ∈ N0 = {0, 1, 2, . . . }

is an n−dimensional real vector space with a regular quadratic form q : Rn → R, where
q(x1, . . . , xn) =

∑n−p
i=1 x

2
i −

∑n
j=n−p+1 x

2
j in certain basis. For p = 1, it is called Minkow-

ski space. For p = 0, we get Euclidean space. We use the notation x = (x1, . . . , xn)
> for the

vectors in Rn
p .

Let Mn,n(R) be the set of n × n matrices with real coefficients. We can write the
quadratic form q in a certain basis of Rn in the matrix form as q(x) = x>Mx, where
M ∈ Mn,n(R) is symmetric and regular. A quadratic form has an associated polar form
P : Rn × Rn → R given by P (x, y) = x>My. Clearly, it is bilinear and symmetric. Since
q(x) = P (x, x), the polar form plays a role of scalar product. Hence, we call it pseudo-scalar
product since positive definiteness might not be satisfied. The vectors x, y ∈ Rn

p are pseudo-
orthogonal if P (x, y) = 0.

By standard construction, we get an affine space with a pseudo-Cartesian coordinate
system S(O, x1, . . . , xn), where the directions of axes x1, . . . , xn are pseudo-orthogonal and
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O is the origin. We say, that the coordinate axes x1, . . . , xn−p are space-like and the axes
xn−p+1, . . . , xn are time-like. In the following, we work using such a setup.

Using the quadratic form, we classify the vectors in the pseudo-Euclidean space. We
call the vector x ∈ Rn

p space-like if q(x) > 0, time-like if q(x) < 0 and light-like if q(x) = 0.
All the vectors in q−1(0) are also called isotropic. The set of all light-like vectors forms an
isotropic cone Q of the corresponding quadratic form q.

A point x ∈ Rn
p is space-like (time-like, light-like respectively) if its position vector

x = x − O is such. Note that this depends on the coordinate system. There are two possible
ways, how to define space-like curve (time-like and light-like respectively). A differentiable
curve p : I → Rn

p is called tangentially space-like if the tangent vector ṗ(t) is space-like for
each t ∈ I . A curve p : I → Rn

p is called pointwise space-like if it contains only space-like
points, i.e. the vector p(t) = p(t)− O is space-like vector for every t ∈ I . In our work, we use
the definition of the pointwise space-like curve. One of the advantages is that the condition of
differentiability is not required, although the curves we consider in this paper are polynomial.

Bézier curve in Minkowski space of degree n is the polynomial map b : [0, 1] → Rn
1

that b (t) =
∑n

i=0 B
n
i (t) bi for t ∈ [0, 1]. Points bi ∈ Rn

1 are called control points,
Bn
i (t) =

(
n
i

)
(1 − t)n−iti for i ∈ {0, . . . , n} are Bernstein polynomials of degree n. The

Bézier curve b(t) always passes through the first and the last control point and it lies within the
convex hull of its control points. The construction of Bézier curves is invariant under affine
transformations, but not invariant under all projective transformations. More properties can be
found in [4, 5].

There is an alternative way how to define the Bézier curve. Instead of one control point,
we determine one point of the curve and the tangent line to the curve at this point. We focus
on the planar cubic curves. Let the points A,F,B, T ∈ R2

1 and `T be a line such that the point
T ∈ `T . The question is whether there is an appropriate control point C, such that the Bézier
curve bACFB(t) exists and how many such points C exist. It depends only on the direction
vector of the line `T .

Definition 2.1 (Feasible tangent line at a point of the cubic). Let the points A,F,B, T ∈ R2
1

and `T be a line such that the point T ∈ `T . The line `T is called feasible, if there exist at least
one point C such that there exist the Bézier curve bACFB(t) containing the point T with tangent
line `T at the point T .

There may exist more control points C for the given points A,F,B, T ∈ R2
1 and a

feasible tangent line `T , see fig. 1(a).

3. Space-like conditions

Let us consider Minkowski space R3
1 and a cubic Bézier curve with the control pointsA,C, F,B

in this order, denoted by bACFB (t). In order a Bézier curve to be space-like, each of its points
have to be space-like. Let the points A = [a1, a2, a3] and B = [b1, b2, b3] be fixed. Since Bézier
curve interpolates its endpoints, we have necessary and sufficient conditions

a21 + a22 − a23 > 0 , (1)
b21 + b22 − b23 > 0 . (2)
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Fig. 1. (a) For feasible tangent line `T , there may exist two (or more) points C1, C2 such that
the Bézier curves b1(t), b2(t) contain the point T and they have tangent line `T at the
point T .
(b) The boundary map σ maps the part of the set of points of contact D1 ⊂ D on the
curve ∂V1 ⊂ ∂V . See that σ(T ) = C.

At the beginning, we consider only the case that Bézier curve is planar and it lies in the
affine plane ρ ⊂ R3

1. We fix the points A,F,B.
In any case, the intersection of the light-cone Q and the plane ρ is a conic section K (see
fig. 2(a)). The figure 2(b) shows all cases how the set of all space-like points S in the possible
types of the plane ρ looks like. The pointwise space-like Bézier curve bACFB (t) ⊂ S. We
solve the problem in the plane ρ for each type of conic section and the planar results can be put
together to form the spatial result.

Let Sρ(O, x, y) be any pseudo-Cartesian coordinate system in the plane ρ. Let
A = [ax, ay], C = [cx, cy], F = [fx, fy] a B = [bx, by] be the local affine coordinates of
the control points in Sρ(O, x, y). From now on, the points A,B, F are arbitrary, but fixed, and
they satisfy the conditions (1), (2).

Definition 3.1 (Set of admissible solutions). Let Vρ(A,F,B) be a set of points C ∈ ρ such that
the curve bACFB is space-like. Then, we say that Vρ(A,F,B) is a set of admissible solutions
in the plane ρ with respect to A,F,B. If no confusion arise, we say only the set of admissible
solutions V .

Definition 3.2. By V v
ρ (A,F,B), we denote the set of points C ∈ ρ such that bACFB ∩K =M ,

where X ∈M is a point of contact of order 2 (or higher) between bACFB(t) and K. We denote
the set of points C ∈ ρ such that bACFB and K have transversal intersection by V t

ρ (A,F,B).

Note 3.1. The set M in the definition 3.2 contains at most three points, since two different
curves (quadratic and cubic) may have at most three common points of contact of order 2 (see
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Fig. 2. (a) Plane ρ spans the points A,C, F,B. In the case of their non-collinearity, they gener-
ate ρ as their affine hull. The conic section K is an intersection of the light cone Q and
the plane ρ.
(b–g) Let K ⊂ ρ be the conic section (point, double line, pair of lines, ellipse, parabola,
hyperbola). The set S consists of all space-like points in the plane ρ.

e.g. Bézout theorem in [5]). If we mark a point by the letter T , we mean a point of contact
from M .

The union of disjoint sets Vρ(A,F,B) ∪ V v
ρ (A,F,B) ∪ V t

ρ (A,F,B) gives the whole
plane ρ for the given points A,F,B.

4. Set of admissible control points C

We study the set V v
ρ (A,F,B). It is natural, because a "boundary" between the situation that

two curves have no common points and the situation that one curve intersects the other curve
is, that they touch each other in our setup.

Definition 4.1 (Set of points of contact). We say that the set D ⊂ K is the set of points of
contact between K and the set of all bACFB if for any point X0 = [x0, y0] ∈ D there is at least
one point C0 such that C0 ∈ V v

ρ (A,F,B) and X0 ∈ bAC0FB ∩K.

For now, we are unable to describe the exact shape of the set D. But we create an
experimental program, which enables users an interactive work with the control points of the
Bézier curve and conic sections. First, the user determine the position of the control points
A,F,B and the type of conic section. Then, the user changes the position of the control point
C by moving the mouse and the Bézier curve bACFB(t) is drawn immediately. In this way, it is
possible to observe the shapes of the set D and the curves formed by the corresponding points
C. The example of the set D obtained in this way can be seen in fig. 3.

When we find the set D, we need to obtain the corresponding points C forming the
boundary of the set Vρ(A,F,B). For the given points A,F,B, X ∈ D ⊆ K is the tangent line
`X at X to K feasible. In order to find the control point C, we use the following map σ.
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Definition 4.2 (Boundary map). Let D be the set of points of contact for the given points
A,F,B and K and let P(ρ) be the power set of the plane ρ. The map σ : D → P(ρ) is called
boundary map if for every X ∈ D holds σ(X) = {C ∈ ρ | C satisfies the definition 4.1}, see
fig. 1(b).

Theorem 4.1. Let the point X = [x0, y0] ∈ D. Then, the corresponding boundary map
σ : D → P(ρ) has the form

σ(X) = {b(t0)−B
3
0(t0)A−B3

2(t0)F −B3
3(t0)B

B3
1(t0)

, t0 ∈ (0, 1)}, (3)

such that t0 is a solution of the equation

0 = αt30 + βt20 + γt0 + δ (4)

and for A = [ax, ay, 1], F = [fx, fy, 1], B = [bx, by, 1], X = [x0, y0, 1] are

α = (A− 3F + 2B)MKX
>,

β = 3(F − A)MKX
>,

γ = 3(A−X0)MKX
>,

δ = −γ
3

.

Proof. Since we consider only affine points C ∈ ρ, let

K = {[x, y] ∈ R2 : kAx
2 + 2kBxy + kCy

2 + 2kDx+ 2kEy + kF = 0}

with matrix MK . Because of the point of the contact X ∈ bACFB(t), there exists t0 ∈ (0, 1)
such that X = bACFB(t0) = B3

0(t0)A + B3
1(t0)C + B3

2(t0)F + B3
3(t0)B. The point X ∈ K is

light-like so X /∈ {A,B} and t0 /∈ {0, 1}. The equality
〈
∇f(x0, y0), ddtbACFB(t0)

〉
= 0 holds,

because X = [x0, y0] ∈ D. From this cubic equation, we obtain three roots t00, t
1
0, t

2
0 ∈ C. The

line `X is feasible, so at least one (at most three) ti0 ∈ (0, 1), i ∈ {0, 1, 2}. For each ti0 ∈ (0, 1)
we obtain the relevant point Ci using the equation (3). Each point Ci satisfies the definition 4.1
for the point of the contact X . Hence, σ(X) = {Ci | ti0 ∈ (0, 1)} 6= ∅.

At the end, we show one example (see fig. 3). The points A = [−3, 0], F = [0,−4],
B = [5, 6]. The approximation of the set D = {X = [x, y] ∈ K | x ∈ 〈−0.66, 0.41〉 for
y > 0 and x ∈ 〈−0.4, 0.84〉 for y < 0} was founded using experimental program and verify
using Asymptote with an accuracy ±0.02. Using the boundary map σ, we compute the points
C ∈ V v

ρ (A,F,B). In the future we might prove, they form the boundary ∂V of the set of
admissible solutions V .

5. Conclusion

We explore how the set of admissible solutions Vρ(A,F,B) looks like in the experimental pro-
gram. Based on observations and previous work with quadratic curves, we start to study the set
V v
ρ (A,F,B). We define the necessary conditions for the control points A,B and the equations

of the boundary map σ.
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Fig. 3. The set of points of contact D was approximated experimentally, it consists of two
arcs. Using the boundary map σ the set D generates two curves forming the bound-
ary ∂Vρ(A,F,B). The set of admissible solutions Vρ(A,F,B) consists of two regions.

In the future, we need to determine the conditions for the direction vector of the line `T ,
in order to be feasible for given points A,F,B, T . Then we identify the exact shape of the set
D by choosing those points T0 ∈ K that the corresponding tangent line `T0 to the K at the point
T0 is feasible for the points A,F,B, T0. At the end, we prove that the set V v

ρ (A,F,B) obtaining
as σ(D) is the boundary of the set of admissible solutions Vρ(A,F,B).
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