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Abstract. Cubic Bézier curves as collision-free paths are widely used
in path planning. The essential task for finding all possible collision-free
paths is necessary to find those paths, which only touch an obstacle.
We solve the planar cases for an obstacle represented by conic section
K as bounding object. The cubic path is represented by a Bézier curve
with control points A,C, F,B, where A,B are given start and goal
positions and the point F is arbitrary, but fixed. This paper describe
the set D of points at conic section K, which are admissible points of
contact, and the corresponding point C for X ∈ D.

Keywords: cubic Bézier curve, collision-free path, conic section.

1 Introduction
Motion planning is a fundamental research area in robotics. A motion
plan involves determining what motions are appropriate for the robot so
that it reaches a goal state without colliding into obstacles [5]. Let R2

be the Euclidean plane with obstacle represented by a conic section K
as bounding object. Let the point A be the start and the point B be
the finish. We find all cubic Bézier paths starting at A and ending at B
representing collision-free path with respect to an obstacle K.

2 Notation and problem definition
Let R2 be an affine Euclidean plane formed by points X = [x, y]. Let
QK ∈ M3,3(R) be a symmetric matrix. The algebraic curve of degree 2
called conic section is the set K = {[x, y] ∈ R2 : f(x, y) = 0 for f(x, y) =
(x y 1)QK(x y 1)>}. More about spaces with quadratic form can be found
in [1]. In appropriate cases, we consider the equation of the conic section
instead of K due to the fact that the field R is not algebraically closed.
The conic section is the set of self-polar points with respect to polar form
P (X,Y ) determined by the matrix QK . We say that the point X lies out
of conic section if P (X,X) > 0. We denote PA = P (A,X) = AQKX

>,
when X = (x, y, 1) ∈ K and A = (ax, ay, 1). For the point Y , the Y ⊥ is
the polar line determined by equation (Y, 1)QK(X, 1)> = 0. More about
conic sections can be found in [2, 4].

Bézier curve of degree n in the space Rd, d ∈ N, d ≥ 2 is a polynomial
map b : [0, 1] → Rd given by b (t) =

∑n
i=0B

n
i (t)Vi. The points Vi ∈ Rd
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for i ∈ {0, . . . , n} are called control points, the functions Bni (t) =
(
n
i

)
(1−

t)n−iti are Bernstein polynomials of degree n. More about properties of
Bézier curves can be found in [6].

3 Cubic collision-free path
Let ρ be a Euclidean plane containing the conic section K. Let the points
A,B ∈ ρ lie out of conic section. Let the point F be arbitrary, but fixed.
We need to find the set of admissible solutions Vρ(A,F,B) of such points
C ∈ ρ, that the curve bACFB is collision-free with respect to K. We start
by searching the boundary of this set.

By V vρ (A,F,B), we denote the set of points C ∈ ρ such that bACFB∩K
contains only the points of contact of order 2 between the Bézier curve
and the conic section. We say that the set D ⊂ K is the set of points of
contact between K and the set of all bACFB if for any point X ∈ D, there
is a point C such that C ∈ V vρ (A,F,B) and X ∈ bACB ∩K. The exact
shape of the set D is shown later.

At first, we find the map σ : D → V vρ (A,F,B), which express the cor-
respondence between the points of contact with K and the middle control
points. The boundary of the set Vρ(A,F,B) is ∂V = V vρ (A,F,B).

Definition. Let D be the set of points of contact for the given points
A,F,B and K and let P(ρ) be the power set of the plane ρ. The map
σ : D → P(ρ) is called boundary map if for every X ∈ D holds σ(X) =
{C ∈ ρ | C ∈ V vρ (A,F,B) and X ∈ bACFB ∩K is the point of contact}.

Theorem. Let the point X ∈ D ⊂ K whereas the conic section K be
represented with matrix QK . Let the real numbers

α = (A− 3F + 2B)QKX
>,

β = (F −A)QKX
>,

γ = AQKX
>,

δ = −γ

be the coefficients of the cubic function

R(t) = αt3 + 3βt2 + 3γt+ δ (1)

for A = [ax, ay, 1], F = [fx, fy, 1], B = [bx, by, 1], X = [x0, y0, 1]. Then,
the corresponding boundary map σ : D → P(ρ) has the form

σ(X) =

{
b(t0)−B3

0(t0)A−B3
2(t0)F −B3

3(t0)B

B3
1(t0)

, t0 ∈ (0, 1) ∧R(t0) = 0

}
.

(2)
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Figure 1: The boundary ∂V of the set of admissible solutions is a parallel
line to the double line p for K = p.

We can write the discriminant of the cubic equation R(t) as
∆ = 108P (A,X)(P 3(F,X) − P (A,X)P 2(B,X)) using the notation of
polar lines equation. This discriminant enables to compute the number
of real roots of the function given by (1) over an interval. Combining
with Budan-Fourier theorem [3] applied on interval 〈0, 1〉, we are able to
determine the number of roots lying in (0, 1). In other words, we know
how many points Ci exist for given X ∈ K.

3.1 Singular conic sections

At first, we find the set D for singular conic sections, then we consider
regular conic sections.

Theorem. If the conic section K = p, the set of admissible points
of the contact D = K. Moreover, the boundary of the set of admissible
solutions ∂V is a parallel line to the double line p (see fig. 1).

Proof. Without loss of generality, let us consider the conic section
K : − x + y = 0. We obtain P (A,X) = 1

2 (−ax + ay), which is the con-
stant independent on the choice of X. Similarly, the expressions P (B,X)
and P (F,X) are constants. Hence, the coefficients α, β, γ, δ in (2) are
constants independent on the point X ∈ D. Hence, the solutions t1, t2, t3
of the equation (1) are constants for all X ∈ D ⊂ K.

Now, we need to prove that D = p and for every X ∈ D exists exactly
one i ∈ 1, 2, 3 such that root ti ∈ (0, 1). Let us count the number of roots
of the equation (1) belonging to (0, 1). Computing the values derivatives
of R(t) at the end points of the interval 〈0, 1〉, we obtain the table 1. In
the case of singular conic sections all the values are constants independent
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t = 0 t = 1
R(t) −PA 2PB
R′(t) 3PA −3PF + 6PB
R′′(t) −6PA + 6PF −12PF + 12PB
R′′′(t) 6PA − 18PF + 12PB

∆ 108PA(P 3
F − PAP 2

B)

Table 1: The values of derivatives of the function R(t) at the end points
of the interval 〈0, 1〉 and the value of the discriminant.

on the point X ∈ D.
The assumption of the Budan-Fourier theorem reads that the product

R(0)R(1) 6= 0. It holds iff PA 6= 0 ∧ PB 6= 0. This is accomplished,
because the points A,B /∈ K. Now, we consider some configurations of
the points A,F,B with respect to K and check the corresponding number
of roots of the equation (1) in the interval 〈0, 1〉. For the obtaining of the
collision-free path, the points A,B must lie in the same half plane with
respect to K, so we assume PAPB > 0.

For PF = 0, the number of sign changes is equal to 3 and the discrim-
inant ∆ < 0. Which means, there is exactly one real root t0 within the
interval 〈0, 1〉 and the uniquely defined Bézier curve always exists. Let
PF 6= 0 and without loss of generality let PF > 0. If 0 < PA < PF , we
distinguish these two possible positions of the point B as 0 < PF < PB
and 0 < PB < PF . The corresponding table shows that there is exactly
one real root t0. If 0 < PF < PA, we distinguish two possible positions
of the point B the same way. The number of sign changes is either 3 or
1, but in the case of 3 the discriminant ∆ < 0. It restricts the number of
roots to 1. If PA < 0 < PF , the point B must be in the same half-plane,
so PB < 0 and there is only one real root within 〈0, 1〉. The conclusion
of all the cases is, that the set of points of contact D = p and for every
X ∈ D exists exactly one Bézier curve bACFB , where C = σ(X).

At the end, we determine the shape of the curve ∂V . Let T0 ∈ D be
an arbitrary fixed point of contact and let C0 be the corresponding middle
control point. Let T ∈ D be arbitrary point of contact different from T0.
We express T = T0 + usp, where 0 6= u ∈ R and sp is direction vector of
the line p. The corresponding point C is obtained from formula (2) and
for t0 ∈ (0, 1) is B3

1(t0) > 0. If we substitute T by T0 + usp and T0 by
B3

0(t0)A+B3
1(t0)C0 +B3

2(t0)F +B3
3(t0)B, we obtain C = C0 + u

B3
1(t0)

sp.

Hence, the boundary of the set of admissible solutions ∂V is the line with
the same direction vector as the line p.

Theorem. Let K = p∪r. The set of points of contact D =
−−→
SpP ∪

−−→
SrR
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PF < PA
PF < PB

PF < PA
1
2PF < PB < PF

PF < PA
PB < 1

2PF
t = 0 t = 1 t = 0 t = 1 t = 0 t = 1

R(t) − + − + − +
R′(t) + + + + + −
R′′(t) − + − − − −
R′′′(t) + + +

−
+
−

+
−

+
−

# of sign
changes 3 0 3

2
2
1

3
2

2
1

sign of ∆ − no influence no influence

Table 2: The sign changes and the sign of discriminant for the arc of
regular K such that PA > 0, PB > 0 and PF < PA.

(in special case Sp = Sr = p ∩ r). From the previous lemma, the set ∂V
consists of two half-lines parallel with p, resp. r, connected in the point
Cu. If the conic section K = {[0, 0]}, then the set D = {[0, 0]} and the
boundary of the set of admissible solutions ∂V is one continuous curve.

3.2 Regular conic sections

Now, we need to find the set D ⊂ K for regular conic sections. Let us
focus on the necessary algebraic conditions for X ∈ K to be X ∈ D. In
the case of regular conic sections, the coefficients α, β, γ, δ of the function
R(t) are linear functions of X in generic case, because the polar forms
PA, PB , PF depend on the choice of X ∈ D.

Similarly, we use the table 1 for determination of sign changes of
derivatives of the function R(t) in the end points of the interval 〈0, 1〉.
We must distinguish several cases with respect to the mutual position of
the point X ∈ K and the polar lines A⊥, B⊥. The polar lines A⊥, B⊥

divide the conic section K into several arcs and we need to find suit-
able candidates for the set D between them or their subset. The table 2
shows the sign changes and the determinant for the arc such that PA > 0,
PB > 0 and PF < PA. We create similar tables for each arc of the conic
section. We look for all the arcs, where at least one real solution exists
within 〈0, 1〉. Based on these tables, we can formulate the next theorem.

Theorem. The set of admissible points of the contact D is the subset
of the union of the arcs Ki ⊂ K for i = 1, . . . , 4, where

K1 = {X ∈ K : PA ≥ 0 ∧ PB ≥ 0},
K2 = {X ∈ K : PA ≤ 0 ∧ PB ≤ 0},
K3 = {X ∈ K : PA ≥ 0 ∧ PB ≤ 0 ∧ P 3

F − PAP 2
B ≥ 0},

K4 = {X ∈ K : PA ≤ 0 ∧ PB ≥ 0 ∧ P 3
F − PAP 2

B ≤ 0}.
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The equalities in above theorem may occur, because the end points of
the arcs may belong to the set D. Depending on the positions of the points
A,B, F , some of these sets may be empty. For example, the set K1 is
empty iff the segment AB is a secant of K. The necessary condition for the
set D is not the sufficient condition simultaneously. It may happened, that

the Bézier curve determined by the point X ∈
4⋃
i=1

Ki has some transversal

intersection with K. The sufficient conditions are required, because we
need to know the exact shape of the set D for computing the boundary
∂V (A,F,B). We plan to find them in the further research.

4 Conclusion
We focused on collision-free path finding with respect to quadratic obsta-
cles using cubic Bézier curves. We looked for the set V (A,F,B) containing
the admissible middle control points C of collision-free paths. We deter-
mined this set for singular conic sections as obstacles. We defined the
boundary map σ and the necessary conditions for the set of admissible
points of contact D for regular conic sections, while ∂V (A,F,B) = σ(D).
The finding of sufficient conditions for the set D is the topic for further
research.
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