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Abstract

This paper considers quadratic Bézier curves in three-dimensional Minkowski space.

We shall show the conditions for the control points A,C,B of the Bézier curve such

that the Bézier segment is space-like. For the middle control point C, we shall give

a geometrical interpretation of the feasibility condition. The work continues in the

spirit of the works [Gal10], [Pok11], [CP11]. We propose extensions of the topics

and methods used in the work for other classes of polynomial or rational curves.
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Chapter 1

Notation and Preliminaries

In this chapter, we mention a basic definitions and properties of Bézier curves and

Minkowski space. The goal of this chapter is to clarify terms and relations, which we

use in this work. The following text is based on the works [Ber87b, Ber87a, DFN91,

Cha10].

1.1 Minkowski space

Pseudo-euclidean space, denoted by Rn
p , n ∈ N, p ∈ N0 is an n−dimensional real

vector space with a regular quadratic form q : Rn → R, where q(x1, . . . , xn) =∑n−p
i=1 x

2
i −

∑n
j=n−p+1 x

2
j in certain basis. For p = 1, we call it Minkowski space, for

p = 0, we get Euclidean space. We use the notation x = (x1, . . . , xn) for vectors

in Rn
p .

Let Mn,n(R) be the set of n × n matrices with real coefficients. We can write

the quadratic form q in a certain basis of Rn in the matrix form as q(x) = x>Qx,

where Q ∈ Mn,n(R) is symmetric and regular. A quadratic form has an associated

polar form P : Rn × Rn → R given by P (x, y) = x>Qy. Clearly, it is bilinear and

symmetric.

Since q(x) = P (x, x), the polar form plays a role of scalar product. Hence, we

call it pseudo-scalar product. We say, the vectors x, y ∈ Rn
p are pseudo-orthogonal if

P (x, y) = 0.
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Minkowski space Notation and Preliminaries

Although we consider vector space R, we get by standard construction an affine

space with a pseudo-Cartesian coordinate system S(O, x1, . . . , xn), where the axes

x1, . . . , xn are pseudo-orthogonal and O is the origin. We say, that the coordinate

axes x1, . . . , xn−p are space-like and the axes xn−p+1, . . . , xn are time-like. In the

following we work using such a setup.

Using the quadratic form, we classify the vectors in the pseudo-euclidean space.

We call the vector x ∈ Rn
p space-like if q(x) > 0, time-like if q(x) < 0 and light-like

if q(x) = 0. All the vectors in q−1(0) are also called isotropic and they form a cone

Q. The set of all light-like vectors forms the isotropic cone Q of the corresponding

quadratic form. If a subspace F ⊂ Rn
p consists of isotropic vectors, it is called

isotropic subspace. We say that the coordinate axes x1, . . . , xn−p are space-like and

the axes xn−p+1, . . . , xn are time-like.

A point x ∈ Rn
p is space-like (time-like, light-like respectively) if its position

vector x = x − O is such. There are two possible ways, how to define space-like

curve (time-like and light-like respectively).

Definition 1. A differentiable curve p : I → Rn
p is called space-like if the tangent

vector ṗ(t) is space-like for each t ∈ I.

Definition 2 (Space-like curve). A curve p : I → Rn
p is called space-like if it contains

only space-like points, i.e. vector p(t) = p(t)−O is space-like vector for every t ∈ I.

Some properties of the curves, which we know from the Euclidean geometry,

changes in pseudo-euclidean geometry. Specially, those that depend on the scalar

product. For example, the Frenet formulas given in [YT08] are much more compli-

cated and it is necessary to distinguish a type of curve. The works [KJ06, KL10]

show that any rational Minkowski Pythagorean hodograph curve can be obtained

in terms of its associated planar rational Pythagorean hodograph curve and an ad-

ditional rational function. The classification of all spacelike curves with constant

curvatures in four dimensional Minkowski space can be found in [PŠ02]. The differ-

ential geometry of curves and surfaces is covered in [Küh06].
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Bézier curves and surfaces Notation and Preliminaries

b0

b1

b2

b3

b(t)

Figure 1.1: The Bézier curve b(t) always passes through the first and the last control
point and lies within the convex hull of its control points bi ∈ Rn

1 .

In our work, we use the definition 2 of space-like curve. One of the advantages

is that the condition of differentiability is not required.

Throughout the text, the basic geometric objects are marked as follows. We use the

notation
←→
AB for lines,

−→
AB for half-lines and AB for segment. Let t be the line in the

plane. It divides the plane into two disjoint half-planes, we denote them H+
t (open

half-plane), H−t (closed half-plane). In particular situation we describe, which of

the half-planes is closed/opened.

We say, that two curves c1 : f(x, y) = 0 and c2 : x = x(t), y = y(t), t ∈ I have

contact of order k, if the derivatives of f(x(t), y(t)) in the point t = 0 vanishes up

to the order (k − 1) and the k−th derivative is non zero.

1.2 Bézier curves and surfaces

Definition 3 (Bézier curve). Bézier curve in Minkowski space of degree n is a

polynomial map b : [0, 1] → Rn
1 given by b (t) =

∑n
i=0B

n
i (t) bi. The points bi ∈ Rn

1

are called control points, Bn
i (t) =

(
n
i

)
(1 − t)n−iti for i ∈ {0, . . . , n} are Bernstein

polynomials of degree n.

The Bézier curve b(t) always passes through the first and the last control point

and lies within the convex hull of its control points, see the fig. 1.1. The construction

of Bézier curves is invariant under affine transformations, but not invariant under

all projective transformations.
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Bézier curves and surfaces Notation and Preliminaries

Theorem 1. Let the points A,B, T ∈ R2
1 be non collinear and t be a line such that

A,B /∈ t. Then, the quadratic Bézier curve b (t) with end points A,B, containing

the point T and with tangent line t in the point T , is uniquely determined.

Proof. Let the u = (u1, u2) 6= (0, 0) be the direction vector of the tangent line t

and A = [ax, ay], B = [bx, by], T = [tx, ty]. We can define the map τ such that

τ(A,B, T, u) = C returns the middle control point of the Bézier curve b (t). By

using the equations

b(t0) = T = B2
0(t0)A+B2

1(t0)C +B2
2(t0)B ,

ḃ(t0) = ku ,

for C ∈ R2
1, k 6= 0 ∈ R, t0 ∈ (0, 1) as unknowns, we obtain

C =
T −B2

0(t0)A−B2
2(t0)B

B2
1(t0)

,

u1(−2(1− t0)ay + 2(1− 2t0)cy + 2t0by) = u2(−2(1− t0)ax + 2(1− 2t0)cx + 2t0bx) ,

and if we substitute cx, cy using the first equation, we obtain

τ(A,B, T, u) = C =
T −B2

0(t0)A−B2
2(t0)B

B2
1(t0)

, (1.1)

where t0 ∈ (0, 1) is a solution of the equation

0 = αt20 + βt0 + γ , where

α = 2 (u1(by − ay) + u2(ax − bx)) ,

β = 4 (u1(ay − ty)− u2(ax − tx)) ,

γ = −β
2
.

The Bézier curve bACB (t) with control points A,C,B in this order satisfies the

requirements of the theorem.

Some properties of Bézier curves in R3
1 are proved in the paper [Geo08]. The
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Bézier curves and surfaces Notation and Preliminaries

author use the definition 1 of space-like curves. Let us mention some of them.

Theorem 2. Let bM (t) =
∑n

i=0B
n
i (t) bi be the Bézier curve in Minkowski space.

If the vectors 4bi = bi+1 − bi for i ∈ {0, . . . , n− 1} are space-like, then the curve

bM (t) is space-like.

Theorem 3. Let πi : R3
1 → R, where i = 1, 2, 3 is such that for x = (x1, x2, x3) ∈ R3

1

holds πi (x) = xi. Let bM (t) is Bézier curve in R3
1. If π1 (4bi) = π2 (4bi) or

π1 (4bi) = π3 (4bi) for i ∈ {0, . . . , n− 1}, then bM (t) is space-like and non regular.

Theorem 4. If the Bézier curve bM (t) is space-like, then the vectors 4b0 = b1− b0
and 4bn−1 = bn − bn−1 are space-like.

Note 1. The space-like Bézier curve bM (t) with control points b0, . . . , bn, where

n > 3 is closed, if b0 = bn and b0 is in the middle of the segment [b1, bn−1].

Definition 4 (Pseudo-vector product). The pseudo-vector product is bilinear func-

tion θ : R3
1 × R3

1 → R3
1 such that for given x = (x1, x2, x3) , y = (y1, y2, y3) ∈ R3

1 is

θ (x, y) = x× y = (x2y3 − x3y2, x3y1 − x1y3,−x1y2 + x2y1).

Theorem 5. Let bM (t) be space-like Bézier curve. Let us define the functions

Q1 (t) = 〈b′M (t) , b′M (t)〉 ,

Q2 (t) = 〈b′M (t)× b′′M (t) , b′M (t)× b′′M (t)〉 ,

Q3 (t) = 〈b′M (t)× b′′M (t) , b′′′M (t)〉 .

If bM (t) is regular for some t0 ∈ [0, 1], then for the curvature and torsion of Bézier

curve in the point t0 holds

κ (t0) =

√
|Q2 (t0)|(√
Q1 (t0)

)3 ,

τ (t0) =
Q3 (t0)

Q2 (t0)
.

There are also articles about the surfaces, which can be expressed in Bézier form.

The properties of space-like Bézier surfaces in R3
1 are proved in the papers [Geo09]
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Bézier curves and surfaces Notation and Preliminaries

and [UMY11]. The author of [Geo09] obtain sufficient conditions for Bézier surfaces

to be space-like. The authors of [UMY11] give the conditions of the time-like case

and the space-like case for Bézier surfaces.

Let the surface S be given with a parameterization,

φ : U ⊂ R2 → R3
1

(u, v)→ φ(u, v) = (φ1(u, v), φ2(u, v), φ3(u, v)) ,

where φ is smoothly differentiable in U . Assume that the vectors φu = ∂
∂u
φ(u, v)

and φv = ∂
∂v
φ(u, v) are linearly independent for any (u, v) ∈ U . Then S is called a

regular surface in R3
1.

The normal vector field N on S is given by N = φu × φv and N is not necessarily

unit vector field. The tangent space TP (S) to S at the point P = φ(u, v) is two

dimensional subspace of R3
1, which is spanned by the vectors φu and φv.

Definition 5 (Time-like, space-like surface). The surface S ⊂ R3
1 is called space-like

if for any (u, v) ∈ U both vectors φu and φv are space-like. This is equivalent to

saying that the each vector in normal vector field N is time-like.

The surface S is called time-like if the normal vector field N consists only from

space-like vectors.

In [Geo09], we can find the following definition and proposition.

Definition 6 (Tensor-product Bézier surface). Let the points Pij for i ∈ {0, . . . ,m},

j ∈ {0, . . . , n} be points in R3
1 and pij be their position vectors. A polynomial

surface with a parametric equation Bten (u, v) =
∑m

i=0
∑n

j=0B
m
i (u)Bn

j (v) pij, where

u ∈ [0, 1], v ∈ [0, 1], is called a tensor-product Bézier surface in R3
1 with control

points Pij.

Theorem 6. Let Bten (u, v) be the tensor-product Bézier surface in R3
1. Suppose that

4i,j = pi+1,j − pi,j and 4i,j = pi,j+1− pi,j for i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , n− 1}.

If the vectors 4i,0 = 4i,1 = . . . = 4i,n and 40,j for i ∈ {0, . . . ,m − 1}, j ∈

{0, . . . , n− 1} are space-like, then the surface Bten (u, v) is space-like.
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Extended Euclidean plane Notation and Preliminaries

The paper [UMY11] shows that type of surface depends on the corresponding

control net of the surface.

The polar form P in R3
1 ⊃ S induces the polar form denoted by PP in each tangent

plane TP (S) of the smooth surface S. For any x, y ∈ TP (S) ⊂ R3
1 holds P (x, y) =

PP (x, y). The symmetric, bilinear polar form PP has an associated quadratic form

IP : TP (S)→ R given by IP (w) = PP (w,w). The quadratic form IP is called the first

fundamental form of the surface S in the point P ∈ S. The first fundamental form of

the surface S can be expressed in the basis {φu, φv} as IP (w) = Edu2+Fdudv+Gdv2,

where E(u, v) = PP (φu, φu), F (u, v) = PP (φu, φv), G(u, v) = PP (φv, φv) are the

differentiable coefficients. In the paper, the first fundamental form coefficients are

derived in terms of coordinates of control points of the surface, we denote them

EB, FB, GB. Then, the next proposition holds.

Theorem 7. Let B(u, v) be a Bézier surface in R3
1 three-dimensional Minkowski

space. For (u, v) ∈ [0, 1] × [0, 1], B(u, v) is called a time-like (resp. space-like)

surface if F 2
B − EBGB > 0 (resp. F 2

B − EBGB < 0).

The authors study the Plateau problem ([Mon03, Mon04]) in time-like and space-

like Bézier surfaces using the extremal of the Dirichlet functional in R3
1. There are

given some examples for these cases, and they compare the area functionals for the

minimal Bézier surface in R3 and R3
1.

1.3 Extended Euclidean plane

Let E2 be an Euclidean plane. We assign to each class of parallel lines a unique

point at infinity, at which all of the lines meet. All the points at infinity define the

line at infinity l∞. The extended Euclidean plane, denoted by E2 , is obtained as

E2 = E2 ∪ l∞.

So we extend the set of all real points in E2 with infinite number of points at

infinity, but we extend the set of all real lines in E2 with only one line at infin-

ity (l∞). In extended Euclidean plane, any two distinct points determine a unique

line (collinearity) and any two distinct lines cross at a unique point (concurrence).

7



Conic sections Notation and Preliminaries

These statements are dual, which means they are formed by changing points to lines

and collinearity to concurrence.

Let S(O, e1, e2) be an affine coordinate system in E2. Then each point at infinity

a∞ ∈ E2 corresponding to real line a has homogeneous coordinates [x1, x2, 0], where

x1, x2 ∈ R and (x1, x2) 6= (0, 0) is direction vector of the real line a. Each real point

A belongs to real line a has homogeneous coordinates [x1, x2, x3], where x3 6= 0 and

[x1
x3
, x2
x3

] are its affine coordinates. Hence, each point in E2 (real or at infinity) has

an infinite number of triplet of homogeneous coordinates.

1.4 Conic sections

A conic section K in R3
1 is a curve obtained by intersecting a cone (more precisely,

a right circular conical surface) with a plane. This plane algebraic curve of degree 2

is the set K = {[x, y] ∈ R2 : f(x, y) = 0}, where f(x, y) = kAx
2 + 2kBxy + kCy

2 +

2kDx+2kEy+kF . In appropriate cases, we consider the equation of the conic section

instead of K due to the fact the field R is not algebraically closed.

We can write the equation of a conic section in the matrix form as

f(x, y) =
(
x y 1

)
kA kB kD

kB kC kE

kD kE kF




x

y

1

 , (1.2)

where (x, y, 1) are extended coordinates of point (x, y) in E2. We denote this 3× 3

matrix by MK .

The determinant ∆ = det (MK) is called the determinant of the conic section.

And the determinant δ = det
((

kA kB
kB kC

))
is called the discriminant of the conic sec-

tion.

If ∆ 6= 0, the conic section is regular. If δ = 0 then the conic section is a parabola,

if δ < 0, it is an hyperbola and if δ > 0, it is an ellipse. A conic section is a circle if

δ > 0 and kA = kC and kB = 0.

If ∆ = 0, the conic is a degenerate parabola (two coinciding lines), a degenerate

8



Conic sections Notation and Preliminaries

ellipse (a point ellipse), or a degenerate hyperbola (two intersecting lines).

In the extended Euclidean plane, it is necessary to homogenize the equation (1.2)

by replacing (x, y, 1) with (x, y, z). We obtain the conic section K = {[x, y, z] ∈

R2 : f(x, y, z) = 0} in homogeneous coordinates.

From each pointX ∈ R2 lying outside the regular conic section, one can construct

two tangent lines to regular K. The corresponding points of contact may be either

real or at infinity. In the case of point at infinity of the contact, the conic section K

is hyperbola and the tangent line is the asymptote a. We denote by a∞ the point of

contact at infinity, see fig. 3.3. We denote the set of all tangent lines to K by TK .

We denote by ∇f(x0, y0) the gradient of K in the point [x0, y0] ∈ K.

9



Chapter 2

Space-like conditions for quadratic

Bézier curves

Let us consider a Minkowski space R3
1 and a quadratic Bézier curve with control

points A,C,B in this order, denoted by bACB (t). We find the necessary and sufficient

condition for the control points A,B. Then, we fix them and we are looking for the

set of all such points C that the Bézier curve bACB (t) is space-like.

2.1 Necessary conditions for the end points

In order a Bézier curve to be space-like, each of its points have to be space-like.

Let the points A = [a1, a2, a3] and B = [b1, b2, b3] be fixed. Since Bézier curve

interpolates its endpoints, we have necessary and sufficient conditions

a21 + a22 − a23 > 0 , (2.1)

b21 + b22 − b23 > 0 . (2.2)

A generic quadratic Bézier curve is a part of a parabola (see the fig. 2.2), so

it lies in the plane ρ ⊂ R3
1. Since the given points A,B ∈ ρ, the construction of

the plane ρ has several degrees of freedom depending on their positions. By using

10



Necessary conditions Space-like conditions for quadratic Bézier curves

Figure 2.1: Plane ρ spans points A,B,C. In case of their non-collinearity, they
generate ρ as affine hull. The conic section K is an intersection of the light cone Q
and the plane ρ.

the equation ρ = {X ∈ R3
1; X = A + tv + sw, for t, s ∈ R}, the degree of freedom

is represented by the vectors v, w. If A 6= B, the degree of freedom is 1. As the

position of the point C changes, the plane ρ eventually rotates about the axis
←→
AB,

so we can choose as v = B−A and the choice of the vector w is free. If A = B, the

degree of freedom is 2 and the choice of both vectors v, w is free.

In any case, the intersection of the light-cone Q and the plane ρ is a conic section

K (see fig. 2.1). The figure 2.3 shows how the set of all space-like points S in the

plane ρ looks like. The space-like Bézier curve bACB (t) lies outside the light-cone

Q, hence outside of the conic section K in the plane ρ (bACB (t) ⊂ S). We present a

solution in the plane ρ for each type of conic section and the planar results can be

put together to form the spatial result.

As we shall see later, it is useful to consider ρ as an extended pseudo-euclidean

plane. But we consider only real points A,B,C /∈ l∞. Let Sρ(O, x, y) be a pseudo-

Cartesian coordinate system in the plane ρ. Let A = [ax, ay], C = [cx, cy] a B =

[bx, by] be the local affine coordinates of the control points in Sρ(O, x, y).

From now, the points A,B are fixed and they satisfy the conditions (2.1), (2.2).

11



Necessary conditions Space-like conditions for quadratic Bézier curves

b(t)
A

C

B

b(t)

A = B

C

b(t)

A

C

B

b(t)

A

C

B

Figure 2.2: Types of quadratic Bézier curves.

K
S

K

S
K

S

S

K
K

S

S

K

Figure 2.3: Let K ⊂ ρ be the conic section (point, double line, pair of lines, ellipse,
parabola, hyperbola). The set S consists of all space-like points in the plane ρ.

Definition 7 (Set of admissible solutions). Let Vρ(A,B) be a set of points C ∈ ρ

such that the curve bACB is space-like. Then, we say that Vρ(A,B) is a set of

admissible solutions.

12



Chapter 3

Set of admissible points of contact

In this chapter, we study for the given points A,B all Bézier curves bACB such that

common points of the curve bACB and conic section K are only the points of their

contact. It is natural, because a "boundary" between the situation that two curves

have no common points and the situation that one curve intersects the other curve

is, that they touch each other.

Definition 8 (Set of points of contact). We say that the set D ⊂ K is the set of

points of contact between K and the set of all bACB if for any point X = [x0, y0] ∈ D

there is a point C such that bACB(t) ∩K = M , where X ∈ M is a point of contact

of order 2 and the set M contains only points of contact of order 2 between bACB(t)

and K.

Note 2. The set M contains at most two points, since two different quadratic

curves may have at most two common points of contact of order 2 (Bézout theorem

[Kun05]). If we will mark a point by letter T , we mean a point of the contact.

Definition 9 (Double contact). We say that bACB has double contact, if it has

with K exactly two points of contact of order 2 (i.e. the set M contains exactly

two points). We denote the middle control point of the Bézier curve Cu. If K is

regular conic section, we denote the touch points by the letter Ui (see the fig. 6.4).

If K is singular conic section, we denote the touch points by the letter Si (see the

fig. 6.2(b)).

13



Set of admissible points of contact

A B

C

Tt

H+
t

H
−
t

K

bACB

A B

C

T t

K

bACB

A B

C
T t

K

bACB

X

(a) (b) (c)

Figure 3.1: (a) exterior point of contact T (b) interior point of contact T
(c) exterior point of contact T

When we obtain K as a connected component of regular conic section, it may

be ellipse, parabola or one component of hyperbola.

Definition 10 (Separating tangent line). Let t be the tangent line to connected

component of regular conic section K in the point T ∈ K. It divides the plane

ρ into two disjoint half-planes H+
t , H

−
t such that K \ {T} ⊂ H+

t . We say, that t

separates the connected component of conic section K and the set of points O, if

they lie in the different half-planes with respect to the tangent t. I.e. K \{T} ⊂ H+
t

and O ⊂ H
−
t (see fig. 3.1). We denote the set of all separating tangent lines by

Tsep(O,K). The corresponding points of contact are real or points at infinity. We

denote by S(O,K) ⊂ K the set of all real points of contact.

Definition 11 (Exterior (interior) point of contact). We say that bACB (t) touches

connected component of regular conic section K from the outside (inside), if their

common tangent is (is not) separating (see the fig. 3.1). Then, the point of contact

is called exterior (interior) point of contact.

Note 3. The set of all exterior (interior) points of contact is denoted Dext (Din).

In the case of regular conic section, the set of points of contact D = Dext ∪Din.

Now, we describe the set of points of contact D for every type of conic section.

Let K be a singular conic section. In the case of K = {VQ}, where VQ is the top

of the isotropic cone Q, we have D = {VQ} (see the figure 6.1).

If K = p, where p is an isotropic double line, we must distinguish two cases. If A,B

14
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lie in the opposite half-planes generated by the line p, we have D = ∅. If A,B lie in

the same half-plane, the set of points of contact D = p (see the figure 6.2(a)).

The last singular case is K = p ∪ r, where p, r are pair of distinct isotropic lines.

Then, there are two space-like regions in the plane ρ. If A,B lie in the different

regions, there is no space-like Bézier curve bACB. Let A,B lie in the same region,

which is determined by two half-lines
−−→
VQP ⊂ p and

−−→
VQR ⊂ r. Let Sp ∈ p and Sr ∈ r

are the points of contact of the Bézier curve bACuB, i.e. bACuB ∩ K = {Sp, Sr} is

double contact. Then D =
−−→
SpP ∪

−−→
SrR (see the figure 6.2(b)). The special case is

Sp = Sr = VQ.

Let K be a regular conic section. From each space-like point X ∈ ρ, one can

construct two tangent lines to K.

3.1 Set of exterior points of contact

Now, we describe the set Tsep(AB,K) for the given A,B, because the corresponding

real points of contact S(AB,K) form the set Dext.

Let K be a regular conic section, but not hyperbola. Let t1A, t2A, t1B, t2B be the

tangent lines from the points A,B to K and the points T1A, T2A, T1B, T2B ∈ K be

the corresponding real points of contact. The points T1A, T2A split the conic section

K to some arcs. We denote
_

T1AT2A the arc
_

T1AT2A⊂ 4AT1AT2A. Similarly, for

points B, T1B, T2B we get
_

T1BT2B. In order A (B) to be separated from K, the point

T ∈
_

T1AT2A (T ∈
_

T1BT2B). So, the set S(A,K) =
_

T1AT2A and S(B,K) =
_

T1BT2B (see

fig. 3.2).

If K = K1 ∪K2 is hyperbola, where K1, K2 are connected components of K, we

need to consider each of them separately. Let a1, a2 be the asymptotes of hyperbola.

It may not hold that all the points of contact T1A, T2A, T1B, T2B ∈ {K1 ∪ a∞1 ∪ a∞2 }.

Let both T1A, T2A ∈ K2. If t ∈ TK1 , then also t ∈ Tsep(A,K1). Hence, if we an-

alyze the case of K1, then S(A,K1) =
_

a∞1 a
∞
2 = K1 and Tsep(A,K1) = TK1 . Let

T1A ∈ {K1 ∪ a∞1 ∪ a∞2 } and T2A ∈ K2. Since the asymptote a1 ∈ Tsep(A,K1), the set

15
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A

K

t1A

t2A

T1A

T2A

t

T

H
−
t H+

t
A

B

t1B

t2B

t1A

t2A

T1B

T2B

T1A

T2A

K

(a) (b)

Figure 3.2: (a) the arc S(A,K) =
_

T1AT2A⊂ 4AT1AT2A determines all tangent lines
Tsep(A,K) that separate A and K
(b) the arc S(A,K)∩S(B,K) determines all tangent lines Tsep(AB,K) that separate
AB and K

S(A,K1) =
_

T1Aa
∞
1 ⊂ K1 define the set Tsep(A,K1). Similarly, for the point B or K2.

For the corresponding illustration see fig. 3.3.

Lemma 8 (Separating tangent line). Let A,B be space-like points and K be a

connected component of regular conic section. Let t ∈ TK and the point T ∈ K be

its point of contact. The tangent line t ∈ Tsep(AB,K) if and only if T ∈ S(A,K) ∩

S(B,K) (see fig. 3.2 for the case of ellipse).

Proof. Sufficient condition. If the tangent line t is separating, then the points A,B

and the conic section K are separated. In order A (B) to be separated from K, the

point T ∈ S(A,K) (T ∈ S(B,K)). Since A and B should be separated simultane-

ously, T must belong to the intersection of these two arcs.

Necessary condition. Let a point T ∈ S(A,K) ∩ S(B,K) and K \ {T} ⊂ H+
t .

Because the point T ∈ S(A,K) we have the point A ∈ H
−
t . Also the point T ∈

S(B,K), so the point B ∈ H
−
t . Therefore, entire segment AB ⊂ H

−
t due to

convexity of H−t .

Theorem 9 (Set of exterior points of contact). Let A,B be space-like points and K

be a regular connected conic section. The set of exterior points of contact Dext 6= ∅

if and only if the segment AB ∩K = ∅ or AB ∩K = {T0}.
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K2
K1

A

B

T2A

a∞1

T1Aa1
a2

K2
K1

A

B

T1BT2B

a∞1

a1 a2

(a) (b)

Figure 3.3: (a) Let us find, how the set Tsep(A,K1) looks like. The point T1A =
a∞2 ∈ {K1 ∪ a∞1 ∪ a∞2 }. Because T2A ∈ K2, we have to "replace it" by a∞1 ∈
{K1 ∪ a∞1 ∪ a∞2 }, where the asymptote a1 ∈ Tsep(A,K1). The set of separating
tangent lines Tsep(A,K1) is determined by the arc of corresponding points of contact

S(A,K1) =
_

T1Aa
∞
1 ⊂ 4AT1Aa∞1 . Since T1A = a∞2 , we have S(A,K1) = K1.

(b) If we are seeking the set Tsep(B,K1), we have to "replace" the T2B ∈ K2 by
a∞1 ∈ {K1 ∪ a∞1 ∪ a∞2 } (not by a∞2 , because a2 /∈ Tsep(B,K1)). The set Tsep(B,K1)

is determined by the arc of corresponding points of contact S(B,K1) =
_

T1Ba
∞
1 ⊂

4BT1Ba∞1 .

The set Dext consists of an arc S(A,K) ∩ S(B,K) on K. The end point of the

arc T ∈ Dext if and only if its corresponding tangent line t to K contains both the

end points of the curve bACB(t), the control points A and B.

Note 4. As we said, we consider the hyperbola as two separate subsets K1, K2 of a

conic section. Therefore, there could be two continuous arcs D1
ext, D

2
ext, one on each

component K1, K2. Then Dext = D1
ext ∪D2

ext.

Proof. Sufficient condition. Let AB ∩K = {X1, X2}. Then S(A,K)∩ S(B,K) = ∅

so there exists no separating tangent line t ∈ Tsep(AB,K). Hence, for any Bézier

curve bACB there exists no separating tangent line Tsep(bACB, K). Consequently the

set Dext = ∅.

Necessary condition. At first, let AB∩K = ∅. Then S(A,K)∩S(B,K) 6= ∅. Let

t ∈ TK and the point T ∈ K be its corresponding point of contact. Using the theo-

rem 1, the quadratic curve bACB is uniquely determined by the points A,B, T and by

the tangent line t. If T /∈ S(A,K)∩S(B,K), then the tangent line t /∈ Tsep(AB,K),

t /∈ Tsep(bACB, K) and T /∈ Dext. On the other hand, because quadratic Bézier
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curve is a convex curve, each of its tangent line defines the supporting half-plane

to the curve. If t ∈ Tsep(A,K) and t ∈ Tsep(B,K), then t ∈ Tsep(bACB, K). So,

for every T ∈ S(A,K) ∩ S(B,K) holds that t ∈ Tsep(bACB, K). Hence, we have

Dext = S(A,K) ∩ S(B,K) 6= ∅.

Now, let AB ∩ K = {T0}, then S(A,K) ∩ S(B,K) = {T0}. So there is only one

separating tangent line t0 ∈ Tsep(AB,K) and Dext = {T0} 6= ∅.

Without loss of generality, let Bézier curve bACB is determined by the points

A,B, T1A and tangent line t1A to K and T1A ∈ Dext. It holds if and only if the

tangent line to bACB in the end point A is the same as tangent line t1A. It holds if

and only if the Bézier curve is a segment and the points A,B, T1A ∈ t1A are collinear.

Note: if for both end points T1, T2 of the arc Dext holds that T1, T2 ∈ Dext, then

A = B.

Note 5. We denote by De the set of all T ∈ Dext such that the corresponding

tangent line t to K at T contains both control points A,B.

3.2 Set of interior points of contact

Lemma 10. If T ∈ Din ⊂ D is an interior point of contact of the Bézier curve b(t)

and the conic section K, then there exists the triangle 4ABC such that T ∈ 4ABC

and the sides AC,CB have no common point with the conic section K, see fig. 3.4.

Proof. Let the Bézier curve bACB be determined by the end points A,B and the

tangent line t at the point T ∈ K ∩ bACB. Then, the triangle 4ABC determined by

the control points of the Bézier curve satisfies the requirements of the lemma. The

point T ∈ 4ABC because the Bézier curve is completely contained in the convex

hull of its control points. The sides AC,CB have no common point with the conic

section K because they are separated from K by the curve bACB.

The line
←→
AB divides the plane ρ into two half-planes, the open half-plane H−AB,

and the closed half-plane H+
AB such that

←→
AB ⊂ H+

AB. Let us divide tangent lines
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A
B

C

T

K

bACB

Figure 3.4: For the point T ∈ Din ⊂ D there exists the triangle 4ABC such that
T ∈ 4ABC and the sides AC,CB have no common point with the conic section K.

from A,B, that are not in Tsep(AB,K), into two pairs t+1 , t
+
2 and t−1 , t

−
2 such that the

corresponding points of contact T+,−
i = t+,−i ∩K, i = 1, 2 lie in the same half-plane

T+
1,2 ∈ H+

AB and T−1,2 ∈ H−AB. See figure 6.5.

Definition 12 (Converging (diverging) tangent lines). If t+1 ∩ t+2 = P+ ∈ H+
AB, then

we say that tangents t+1 , t
+
2 converge. If P+ ∈ H−AB, then we say they diverge. See

figure 6.5.

The same definition holds for the pair t−1 , t
−
2 . Let us divide the set Din into

the interior points of contact which are located in the half-plane H+
AB (resp. H−AB)

denoted by D+
in (resp. D−in). There holds Din = D+

in ∪D−in.

Theorem 11 (Set of interior points of contact). If the set D+
in 6= ∅ (D−in 6= ∅), then

the pair of tangents t+1 , t
+
2 (t−1 , t

−
2 ) converge.

Proof. If the mentioned pair of tangent lines diverge, then there exists no triangle

4ABC from the lemma 10.

Hypothesis 1. The condition in the theorem 11 is also necessary for Din 6= ∅.

Hypothesis 2. If hypothesis 1 holds, let t1, t2 /∈ Tsep(AB,K) be a pair of converging

tangent lines. If there exists a point C such that bACB has double contact and C and

P = t1 ∩ t2 lie in the same half-plane with respect to the
←−→
T1T2, then let us denote

the corresponding points of contact U1, U2. The set of interior points of contact Din

is either the continuous arc
_

T1T2 on K or the union of the arcs
_

T1U1 ∪
_

U2T2. The

points T1, T2 /∈ Din, the points U1, U2 ∈ Din.
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Note 6. IfDin contains a set {
_

T1U1 ∪
_

U2T2}, we will call the union of two continuous

arcs
_

T1U1 and
_

U2T2 by sharp arc (see fig. 6.4). Later, we will see that the union of

these two arcs will have the same properties as a continuous arc of interior touches
_

T1T2. So this sharp is just apparent and this union has structural properties for our

use as a continuous arc.

3.3 Set of points of contact

As we said, the set of all points of contact D = Dext ∪Din. The following theorem

describes the set D for different regular types of conic section K.

Theorem 12 (Set of points of contact).

(a) Let K be an ellipse. Then, the set of the points of contact D is either one arc

of the exterior points of contact or one arc of exterior and one arc of interior

points of contact or one or two arcs of interior points of contact.

(b) Let K be a parabola. Then, the set of the points of contact D is either one arc

of the exterior points of contact or one arc of interior points of contact.

(c) Let K be a hyperbola. Then, the set of the points of contact D is either two arcs

of the exterior points of contact or one arc of exterior and one arc of interior

points of contact.

The arcs of the interior points of contact may be sharp. The set of exterior points

of contact may contains only one point T0, when segment AB ∩K = {T0}.

Proof. a) (Ellipse) Let AB ∩K = ∅. Then among all tangents from A and B to K,

there are two in the set Tsep(AB,K). They determine one arc Dext. The other two

tangents are not in the set Tsep(AB,K). If they converge, then there is also one arc

Din. If they diverge, Din = ∅. If AB ∩K = {T0}, the only difference is that from

separating pair of tangent lines become one line
←→
AB and Dext = {T0}.

Let AB ∩ K = {X1, X2}. Then, we consider two pairs of tangent lines t+1 , t
+
2

and t−1 , t
−
2 . One pair, without loss of generality the pair t+1 , t

+
2 , always converge
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so D+
in 6= ∅. The pair t−1 , t

−
2 may converge or diverge, so we can obtain D as one or

two arcs of Din.

b) (Parabola) Let AB ∩K = ∅. Then among all tangents from A and B to K,

there are two in the set Tsep(AB,K). They determine one arc Dext. The other two

tangents are not in the set Tsep(AB,K), but they always diverge so Din = ∅. Hence,

we obtain D as one arc Dext. If AB ∩K = {T0}, then D = Dext = {T0}.

Let AB ∩K = {X1, X2}. Without loss of generality, the pair t+1 , t
+
2 always converge

so D+
in 6= ∅ and the pair t−1 , t

−
2 always diverge so D−in = ∅. Hence, we obtain D as

one arc Din.

c) (Hyperbola) Each component K1, K2 of a hyperbola K separately behaves

similarly to the parabola case. There are two cases of configuration AB and K1, K2.

The first, AB ∩K1 = ∅ and also AB ∩K2 = ∅. Then, we obtain D as two arcs of

Dext. If AB ∩K1 = {T0}, the only difference is that D1
ext = {T0} (similarly for K2

if AB ∩K2 = {T0}).

The second case, AB ∩K1 = ∅ and AB ∩K2 = {X1, X2}. Then we obtain D as one

arc of Dext ⊂ K1 and one arc of Din ⊂ K2. There are no other configurations.

In the tables 3.1 and 3.2, we see the structure of the set D looks like for various

types of conic sections. The numbers in the table 3.2 represent the number of arcs

in the set D. The generic cases for regular and singular conic sections are illustrated

in chapter 6.
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{VQ} p p ∪ r
Dext Din Dext Din Dext Din

AB ∩K = ∅ {VQ} ∅ p ∅ −−→
SpP ∪

−−→
SrR ∅←→

AB ∩K 6= {T}
AB ∩K = ∅ {VQ} ∅ – – – –←→
AB ∩K = {T}

AB ∩K = {X1, X2} – – – – – –
AB ∩K = {T0} {VQ} ∅ – – – –

A = B {VQ} ∅ p ∅
−−→
VQP ∪

−−→
VQR ∅

Table 3.1: The set D for singular conic sections.

ellipse parabola hyperbola
Dext Din Dext Din Dext Din

AB ∩K = ∅ 1 ∅,1 1 ∅ 2 ∅←→
AB ∩K 6= {T}
AB ∩K = ∅ 1 ∅ 1 ∅ 2 ∅←→
AB ∩K = {T}

AB ∩K = {X1, X2} ∅ 1,2 ∅ 1 1 1
AB ∩K = {T0} {T0} ∅,1 {T0} ∅ 2 ∅

A = B 1 ∅ 1 ∅ 2 ∅

Table 3.2: The set D for regular conic sections. The numbers indicate the number
of arcs in the set D.
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Chapter 4

Boundary map

For the given points A,B, X ∈ D \De ⊆ K and the tangent line t at X to K, the

Bézier curve bACB touching the conic section K is clearly identified. In order to find

the middle control vertex C, we use the following map σ. This map is very similar

to the map τ from the chapter 1, only the direction vector of the line t is expressed

by the coefficients of the conic section K.

Definition 13 (Boundary map). Let D be the set of points of contact for the given

space-like points A,B and K. The map σ : D \De → R2
1 is called boundary map if

for every X ∈ D \De holds σ(X) = C, for C from the definition 8, see the fig. 4.1.

Note 7. It is not possible to define the map σ on the points in De. If T ∈ De ⊂ K

then points A,B, T are collinear on the tangent line t to K. And there is an infinite

number of points C such that Bézier curve bACB touches K in T . All suitable C

form a half-line, therefore we are interested in the end point of the half-line, the

point CS.

Theorem 13. Let the conic section K 6= {VQ} and X = [x0, y0] ∈ D \ De. Then

the corresponding boundary map σ : D \De → R2
1 has the form

σ(X) =
b(t0)−B2

0(t0)A−B2
2(t0)B

B2
1(t0)

, (4.1)
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where t0 ∈ [0, 1] is a solution of the equation

0 = αt20 + βt0 + γ (4.2)

and

α = 2 (αa − αb) ,

β = 2
(
x0 y0 1

)
2kA 2kB k1

2kB 2kC k2

k1 k2 k3




x0

y0

1

 ,

γ = −β
2
,

where

αa =
(
ax ay 0

)
kA kB kD

kB kC kE

kD kE kF




x0

y0

1

 ,

αb =
(
bx by 0

)
kA kB kD

kB kC kE

kD kE kF




x0

y0

1

 ,

k1 =
(
kA kB kD

)
−ax
−ay

1

 ,

k2 =
(
kB kC kE

)
−ax
−ay

1

 ,

k3 = 2
(
kD kE kF

)
−ax
−ay

0

 .
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Boundary map

A

B
K

C

∂V

D

T

Figure 4.1: The boundary map σ, see that σ(T ) = C.

Proof. Since we consider only real points C ∈ ρ, let K = {[x, y] ∈ R2 : kAx
2 +

2kBxy + kCy
2 + 2kDx + 2kEy + kF = 0}. Because of the point of the contact

X ∈ bACB(t), there exists t0 ∈ [0, 1] such that X = bACB(t0) = B2
0(t0)A+B2

1(t0)C+

B2
2(t0)B. The point X ∈ K is light-like so X /∈ {A,B} and t0 /∈ {0, 1}. Because

X = [x0, y0] ∈ D \De then holds
〈
∇f(x0, y0),

d
dt
bACB(t0)

〉
= 0. From this quadratic

equation we obtain two roots t00, t10, but only one is in (0, 1). If both t00, t10 ∈ (0, 1)

and t00 6= t10 then X ∈ De. Let t00 ∈ (0, 1). Then we substitute t0 = t00 into the Bézier

curve equation and obtain relevant point C from the definition 8 for the point of

the contact X. Hence, C = σ(X).

Theorem 14. For each X ∈ D \De there exists exactly one point C such that the

Bézier curve bACB(t) ∩K = {X}.

Proof. Let t ∈ TK touches the conic section in the point X ∈ K. We know, that the

Bézier curve bACB has the points A,B as the end points, it contains the point X and

it has the tangent line t at X. Hence, using the theorem 1, the quadratic bACB is

uniquely determined up to the case A,B,X ∈ t are collinear. But then X ∈ De.
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Chapter 5

Area of admissible solutions

Lemma 15. The boundary map σ is injective for the set D \De up to the points Ui.

Proof. Let X1, X2 ∈ D\{De∪{Ui}} ⊂ K, X1 6= X2 and σ(X1) = σ(X2) = C. Then,

there exists a double contact Bézier curve bACB such that X1, X2 are the points of

contact. Then {X1, X2} = {U1, U2}, which is a contradiction.

Note 8. Let the sharp arc {
_

T1U1 ∪
_

U2T2} ⊂ Din. The image σ(
_

T1U1 −{T1}) is a

connected curve l1, because the boundary map σ is a continuous map. Also, the

image σ(
_

U2T2 −{T2}) is a connected curve l2. There exists a point Cu such that the

intersection bACuB ∩K = {U1, U2}, hence, Cu ∈ l1 and Cu ∈ l2. Simultaneously, the

points U1, U2 are the end points of the continuous arcs
_

T1U1 and
_

U2T2. Hence, the

image of the sharp arc under the boundary map σ is the connected curve l = l1 ∪ l2
(see the figure 6.4).

Now, we can find the corresponding point C for the points of contact from the

set D \De. The question is, how can we find the point C corresponding to a given

point of contact T ∈ De ⊂ D.

Lemma 16. Let the points A,B and T ∈ De ⊂ K be collinear.

(a) Let AB ∩K = {T}. The Bézier curve bACB ∩K = {T} if and only if C ∈
←→
AB.

(b) Let AB ∩ K = ∅. The Bézier curve bACB ∩ K = {T} if and only if C ∈
−−→
CSX ⊂

←→
AB, where A,B /∈

−−→
CSX and CS is such that the derivative ḃACSB(t0) = 0

for T = bACSB(t0). For the special case A = B, then the point CS = A+ 2(T − A).
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Proof. Because A,B, T are collinear, the point C ∈
←→
AB. In the case (b), if C

belongs to the opposite half-line to
−−→
CSX, the Bézier curve and conic section have

no common points.

Note 9. In the equation (4.1) of the boundary map σ, the inequality B2
1(t0) > 0

holds for t0 ∈ (0, 1), so the map σ is continuous. The σ maps the connected set

Dext \De onto one connected curve l. If the point T ∈ De 6= ∅, then limX→T σ(X) =

CS and the union l ∪
−−→
CSX is a connected curve.

Theorem 17 (Boundary of the set Vρ(A,B)). The set of all feasible points C such

that bACB ∩K ⊂ D, is the boundary of the set of admissible solutions Vρ(A,B). We

denote it ∂Vρ(A,B).

Proof. The point C belongs to the boundary of the set Vρ(A,B), if each neighbour-

hood N of the point C contains both the point C1 ∈ Vρ(A,B) and C2 /∈ Vρ(A,B).

So, we prove the existence of points C1, C2 ∈ N such that bAC1B ∩ K = ∅ and

bAC2B ∩K = {X1, X2} with transversed intersection (see fig. 5.1).

Let A,B, u as in the theorem 1 be fixed. Since B2
1(t0) > 0 for t0 ∈ (0, 1), the

map τ , which assign to each T the corresponding point C, is continuous. It means,

for each neighbourhood N of the point C exists the neighbourhood M of the point

T such that τ(M) ⊂ N .

Let C be such that bACB ∩ K ⊂ D and T ∈ bACB ∩ K. Let the line t with

the direction vector u is the tangent line to K in T . From above, for arbitrary

neighbourhood N of the point C exists the neighbourhood M of the point T such

that τ(M) ⊂ N . Let T1 = T + k∇f(T ) and T2 = T − k∇f(T ), where k > 0 is

such that T1, T2 ∈ M and they satisfies the requirements of the theorem 1. Let

the lines t1, t2 be parallel to the line t (i.e. the vector u is their direction vector)

and T1 ∈ t1, T2 ∈ t2. Then the points C1 = τ(A,B, T1, u) and C2 = τ(A,B, T2, u)

are C1, C2 ∈ N . We obtain the Bézier curves bAC1B, bAC2B. Since each tangent line

t1, t2 defines the supporting half-plane to the convex quadratic Bézier curve and the

points A,B are space-like, it holds bAC1B ∩K = ∅ and bAC2B ∩K = {X1, X2} with

transversed intersection.
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Note 10. We say, that the boundary of set of admissible solutions ∂Vρ(A,B) is

generated by the set D mapped by the boundary map σ.

Lemma 18. The boundary of admissible solutions ∂Vρ(A,B) consists of one or two

continuous unbounded curves with degree at most four.

Proof. The set D contains one or two arcs of the type Dext or Din. Due to the

notes 8, 9, the boundary of admissible solutions consists of one or two continuous

curves. They are unbounded, because the arcs in D are either unbounded or the

point T ∈ De generates the half-line. The degree of the curves is determined by the

formula (4.1) of the map σ.

The curve l ⊂ ∂Vρ(A,B) divides the plane into two regions W1,W2 and one of

them is the component of set of acceptable solution Vρ(A,B). The following theorem

says which one.

Theorem 19. Let K 6= {VQ} and l ⊂ ∂Vρ(A,B) is a connected curve. Let l divide

the plane into two regions W1,W2. If l is generated by Dext, then Wi ⊆ Vρ(A,B) if

A,B ∈ Wi. If l is generated by Din, then Wi ⊆ Vρ(A,B) if A,B 6∈ Wi.

Note 11. In the case of hyperbola, each component generates one set of admissible

solutions. Hence, we obtain the regions V1(A,B), V2(A,B) for the K1, K2. For

every point C ∈ V1(A,B), the Bézier curve bACB ∩ K1 = ∅. We are looking for

the set of points C, such that bACB ∩ (K1 ∪ K2) = ∅. It holds for every point

C ∈ V1(A,B) ∩ V2(A,B).

Note 12. In the case of K = {VQ}, both W1,W2 ⊂ Vρ(A,B). Only for C ∈

∂Vρ(A,B) is bACB ∩K 6= ∅, so Vρ(A,B) = R2
1 \ ∂Vρ(A,B).

Finally, for the two space-like points A,B and the conic K the set of acceptable

solutions Vρ(A,B) consists of one or two regions, see the table 5.1. It depends on

the number of arcs in the set D and on the type of conic section.
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M

τ (M)

N

K

C

A

B

∂V

D

C1

C2TT1

T2

Figure 5.1: Let C be such that bACB ∩ K ⊂ D and T ∈ bACB ∩ K. For arbitrary
neighbourhood N of the point C, there exists a neighbourhood M of the point T
such that for T1, T2 ∈M the corresponding C1 = τ(T1), C2 = τ(T2) ∈ N . Moreover,
bAC1B ∩ K = ∅ and bAC2B ∩ K = {X1, X2} with transversed intersection. Hence,
C ∈ ∂Vρ(A,B).

{VQ} p p ∪ r ellipse parabola hyperbola
AB ∩K = ∅ 2 1 1 1,2 1 1←→
AB ∩K 6= {T}
AB ∩K = ∅ 1 – – 1 1 1←→
AB ∩K = {T}

AB ∩K = {X1, X2} – – – 1,2 1 1
AB ∩K = {T0} 2 – – 1,2 1 1

A = B 1 1 1 1 1 1

Table 5.1: The number of regions in the set of acceptable solutions Vρ(A,B).
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Chapter 6

Examples

In this chapter, we present all generic cases of the mutual position of the segment

AB and the conic section K.

The special group is the set of singular conic sections. There are figures 6.1, 6.2

for the examples of acceptable solutions for K = {VQ} and isotropic lines as the

conic section K.

For the examples of acceptable solutions Vρ(A,B) for ellipse (unit circle) see the

figures 6.3, 6.4, 6.5. The figure 6.6 shows the acceptable solutions for parabola and

the figures 6.7, 6.8 shows the same for hyperbola.

tA

tBA

B

∂V
W1W2

VQ

V C

bACB

Figure 6.1: Let the conic section K = {VQ}. There is only one possible point
of contact, so D = {VQ}. The corresponding boundary of admissible solutions
∂Vρ(A,B) divides the plane ρ into two regions W1,W2 ⊂ Vρ(A,B), because that
bACB ∩ K 6= ∅ holds only for C ∈ ∂Vρ(A,B). So, the set of admissible solutions
Vρ(A,B) = R2

1 \ ∂Vρ(A,B).
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A

B
K

D

∂V

V

C

bACB

T

A

B
K

D ∂V

VP

R

Cu

Sr

Sp

(a) (b)

Figure 6.2: (a) Let the conic section K = p. If A,B lie in the same open half-plane
generated by K, the set of exterior points of contact Dext = p, else Dext = ∅. The
set of interior points of contact is always Din = ∅. The set D = p generates the
boundary ∂Vρ(A,B). This boundary is the parallel line with the line p, because the
coefficient α in the equation (4.2) is constant (it does not depend on the point of
contact). The set of admissible solution Vρ(A,B) consists of one region. Since the
boundary is generated by the exterior points of contact, A,B ∈ Vρ(A,B).

(b) Let the conic section K = p ∪ r. The points A,B have to lie in the same
quadrant with respect to K. Let it be the quadrant determined by two half-lines−−→
VQP ⊂ p and

−−→
VQR ⊂ r. If there exists the Bézier curve bACuB with double contact

M = {Sp, Sr} with K, the set of exterior points of contact Dext =
−−→
SpP ∪

−−→
SrR. Else,

it holds Sp = Sr = VQ and Dext =
−−→
VQP ∪

−−→
VQR. The set of interior points of contact is

always Din = ∅. The boundaries generated by the half-lines
−−→
SpP ,

−−→
SrR are connected

due to the fact that σ(Sp) = σ(Sr) = Cu. Hence, the set of admissible solution
Vρ(A,B) contains of one region. Because the boundary is generated by the exterior
points of contact, A,B ∈ Vρ(A,B).

31



Examples

A

B K

T1B

T2B

T1A

T2A

P

D

∂V

V

Figure 6.3: According to the theorem 9, the set Dext =
_

T1AT2A ∩
_

T1BT2B. The set
De = ∅, because

←→
AB ∩ K = ∅. The set Din = ∅, because the point P lies in the

opposite half-plane generated by
←→
AB as the points T2A, T2B (corresponding points

to the tangent lines t2A, t2B /∈ Tsep(AB,K)). Hence, the set D = Dext generates the
boundary of admissible solutions ∂Vρ(A,B). Because the boundary is generated by
the exterior points of contact, the A,B ∈ Vρ(A,B) according to the theorem 19.
The set of admissible solutions consists of one connected region.
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A

B

T1B

T2B
T1A

T2A

U1

U2

P

K

bACuB

D

l1 l2

W 1
1 W 2

1

W 1
2

W 2
2

V
V

Cu

Figure 6.4: The set Dext =
_

T1AT2A ∩
_

T1BT2B. The set Din 6= ∅, because the point
P lies in the same half-plane generated by

←→
AB as the points T2A, T2B. The set Din

is the sharp arc
_

T2AU1 ∪
_

U2T2B. The split of the arc is caused by the existence of
the curve bACuB, which has double contact with the conic section K. As one can
see, bACuB ∩K = {U1, U2}. Therefore, the set of points of contact D = Dext ∪Din

generates the curves l1, l2 such that l1 ∪ l2 = ∂Vρ(A,B). Because the curve l1 is
generated by the exterior points of contact, the subset of the Vρ(A,B) is such that
region W 1

1 that A,B ∈ W 1
1 . The curve l2 is generated by the interior points of

contact, so the subset of the Vρ(A,B) is such that region W 2
2 that A,B /∈ W 2

2 . The
set of admissible solutions Vρ(A,B) = W 1

1 ∪W 2
2 consists of two regions.
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A

B

T+
2

T−
2

T+
1

T−
1

H+
AB H−

AB

P+P− KD

∂V

V

A

B

H+
AB H−

AB

P+ P−

K

D

l1 l2

V V

T+
2 T−

2

T+
1 T−

1

(a) (b)

Figure 6.5: (a) The AB∩K 6= ∅, so according to the theorem 9, there holdsDext = ∅.
We divide the non separating tangent lines from the points A,B into two pairs due
to the position of their corresponding points of contact in the half-planes H+

AB, H
−
AB.

As one can see, the point P− ∈ H+
AB and the points T−1 , T

−
2 ∈ H−AB. It means, the

tangent lines t−1 , t
−
2 diverge in H−AB, so the set D−in = ∅ according to the theorem 11.

The pair of the tangent lines t+1 , t
+
2 converge in H+

AB, so the set D+
in =

_

T+
1 T

+
2 as-

suming the hypothesis 1. Hence, the set of points of contact D = D+
in generates

the boundary of admissible solutions ∂Vρ(A,B). The set of admissible solutions
Vρ(A,B) consists of one region.

(b) In this case, both pairs of tangent lines t−1 , t
−
2 and t+1 , t

+
2 converge in cor-

responding half-planes, both sets D−in, D
+
in 6= ∅. Then, the set of points of contact

D = D−in ∪ D+
in generates two curves l1, l2. Hence, the boundary of admissible so-

lutions ∂Vρ(A,B) = l1 ∪ l2 determines two components of Vρ(A,B). The boundary
of admissible solutions ∂Vρ(A,B) is generated by the interior points of contact, so
A,B /∈ Vρ(A,B).
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A

B

T2A

P

K

D

∂V

V

T1A

T1B

T2B

A B

t+1t+2

t−1 t−2

P+

H+
AB

K

D

∂V

V

T+
1 T+

2

(a) (b)

Figure 6.6: (a) Because AB ∩ K = ∅, the set of exterior points of contact
Dext =

_

T1BT1A is determined by the pair of tangent lines t1B, t1A ∈ Tsep(AB,K).
The pair of non separating tangent lines t2A, t2B diverge (the points T2A, T2B and
the point P lying in the opposite half-plane due to the line

←→
AB). Therefore, the

set of interior points of contact Din = ∅. The set of points of contact D = Dext

generates the boundary of admissible solutions ∂Vρ(A,B). The set of admissible
solutions Vρ(A,B) consists of one region.

(b) If AB ∩K = {X1, X2}, one pair of non separating tangent lines always di-
verge and the rest pair always converge. Without loss of generality, the set of points

of contact D = D+
in =

_

T+
1 T

+
2 . The set of admissible solutions Vρ(A,B) consists of

one region.

35



Examples

K1
K2

a1

a2

a∞1

A

B

T1B
T2B

T1A

T2A

D1
D2

l1

l2

W 1
1 W 1

2

W 2
1 W 2

2

V

Figure 6.7: Let us analyse the component K1. Since T2A = a∞2 , the set
S(A,K1) =

_

T1Aa
∞
2 , where both points T1A, a∞2 ∈ {K1 ∪ a∞1 ∪ a∞2 }. The point

T2B ∈ K1, but the point T1B /∈ K1. Hence, we have to substitute the point T1B
by a∞2 ∈ {K1 ∪ a∞1 ∪ a∞2 }, because the asymptote a2 ∈ Tsep(B,K1). Then, the set

S(B,K1) =
_

a∞2 T2B. According to the theorem 9, the set D1
ext =

_

T1Aa
∞
2 ∩

_

a∞2 T2B.
The set D1

in = ∅. The set of points of contact D1 = D1
ext generates the curve

l1 ⊂ ∂Vρ(A,B). The curve l1 divides the plane ρ into two regions W 1
1 ,W

1
2 . Let the

points A,B ∈ W 1
2 . According to the theorem 19, the set of admissible solutions for

the component K1 is V 1(A,B) = W 1
2 .

Now, let us analyse the component K2. We have to substitute the point T1A by
the point a∞1 ∈ {K2 ∪ a∞1 ∪ a∞2 }. The set S(A,K2) =

_

a∞1 T2A= K2. Similarly, we
have to substitute the point T2B by the point a∞1 ∈ {K2 ∪ a∞1 ∪ a∞2 }. The set
S(B,K2) =

_

a∞1 T1B. Hence, the set D2
ext =

_

T1Ba
∞
1 . The set D2

in = ∅. The set of
points of contact D2 = D2

ext generates the curve l2 ⊂ ∂Vρ(A,B) and if the points
A,B ∈ W 2

1 , then V 2(A,B) = W 2
1 .

Finally, the set of admissible solutions for the conic section K is Vρ(A,B) =
V 1(A,B) ∩ V 2(A,B).
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K1 K2

a1 a2

A

B

T1B

T2B

T1A

T2A

D1 D2

l1

l2

V

Figure 6.8: For the component K1, the set of exterior points of contact D1
ext = ∅

and the set of interior points of contact D1
in =

_

T1AT2B. Then the curve l1 generated
by D1 determines the region V 1(A,B) such that A,B /∈ V 1(A,B).
For the component K2, since T2A = a∞2 , the set of exterior points of contact
D2
ext =

_

T1Ba
∞
2 and the set of interior points of contact D2

in = ∅. Then the curve
l2 generated by D2 determines the region V 2(A,B) such that A,B ∈ V 2(A,B).
Finally, the set of admissible solutions for the conic section K is Vρ(A,B) =
V 1(A,B) ∩ V 2(A,B).
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Chapter 7

Conclusion

For the given points A,B in three dimensional Minkowski space, we described the

area V (A,B) of all such points C that the quadratic Bézier curve with control points

A,C,B is space-like.

For this purpose, we define the necessary conditions for the end points A,B of

the Bézier curve. Then, we fixed the points A,B and we looked for the admissible

points C. We solved the problem for each type of conic section K, which the plane

ρ containing the points A,B cuts in the light cone Q.

The area Vρ(A,B) containing the admissible points C ∈ ρ is described via method

of contact point. We proved, that the boundary of this area ∂Vρ(A,B) is determined

by such points C that bACB touches to the conic section K. Hence, we found the set

of admissible points of contact D for the given points A,B as union of exterior and

interior points of contact. Then, we showed how the set D determines boundary

∂Vρ(A,B) using the boundary map σ.

We have illustrated this study with typical examples, which show the area Vρ(A,B)

for each type of conic section K.

When the hypothesis 1, 2 are solved, then the case of quadratic space-like curves

will be completed. We have indications leading to the proves, they still must be

elaborated.
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In this chapter, we present the plan of our future work. We want to focus on con-

clusion of space-like conditions for quadratic curves. In the rest of our study, we

will look for the space-like condition of the Bézier curves of higher degree in three

dimensional Minkowski space. We start to study a conditions for cubic curves, using

the knowledge and methods from quadratic case as much as possible. Additional

methods are to be applied too.

Future research

We would like to proof the hypothesis 1, 2 on the set of interior points of contact.

Then, the space-like conditions for the control points of the quadratic curve will be

entirely completed.

In order to prove the hypothesis 1, we use that if the pair of tangent lines t+1 , t
+
2

converge in the half-plane H+
AB, then the lines v1, v2 from the points A,B, which are

orthogonal to the segment AB, have no common points with K in the half-plane

H+
AB. Let the lines v1, v2 determine the point at infinity v∞. In order to D+

in 6= ∅,

there have to exists the Bézier curve b(t) ⊂ H+
AB such that b(t) ∩K = ∅. We use as

"the limit case" that the Bézier curve bAv∞B ∩K = ∅.

Regarding the hypothesis 2, let the quadratic Bézier curve bACB(t) be a part of the

parabolic arc pC . We denote the curvature of the curve pC at the point X ∈ pC by

κ (pC , X). Let the point PC ∈ bACB ⊂ pC is such that for arbitrary X ∈ bACB ⊂ pC

holds κ (pC , PC) ≥ κ (pC , X). Let the sharp arc {
_

T1U1 ∪
_

U2T2} ∈ Din generate

the connected curve l ∈ ∂Vρ(A,B). For verification of the hypothesis 2, we use
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the following hypothesis. The point Cu ∈ l is such that for arbitrary C ∈ l holds

κ (pCu , PCu) ≤ κ (pC , PC).

After the proof of both hypothesis, the set of admissible solutions will be found for

the each type of conic section in the plane ρ.

Until now, we illustrate the situation only in the plane. Hence, we would like to

make a 3D visualisation of the situation. We will fix the points A,B and we will con-

sider a several positions of the plane ρ. We present a model of set of all admissible

solutions to the problem describing its surface boundary. We detect its singularities.

The analytic expression of the boundary of admissible solutions in the plane ρ

is another interesting question. In order to find it, we express all definitions and

propositions using in this work by analytical equations and inequalities. Also, we

suppose that the parameter t for the points of contact changes continuously. We

look for the interval J ⊂ [0, 1] of the parameter t, and the expression of the bound-

ary from the equation (4.1) of the boundary map σ.

This generates the question, what kind of the object is the boundary in 3D? If we

know the analytic expression of the boundary in the plane, we parametrize it to

find the analytic expression of the boundary of the "spatial set of admissible solu-

tions". Clearly, the same approach can be used in arbitrary dimension for the case

of quadratic Bézier curves.

While looking for the set of points of contact D ⊂ K, we use the term point

at infinity. Then, in the case of K as hyperbola or parabola, our illustrations are

missing the points of the contact in the infinity. Inspired by the books on projective

geometry [Far99] and [Bix06], we would like to construct a spherical model of the

projective plane in order to compare the number of regions in the set of acceptable

solutions Vρ(A,B) with the current results. We suppose, the classification of all

possible cases for regular conic sections unifies and simplifies.
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After the conclusion of the quadratic case, we proceed to find analogous con-

ditions for the control points of cubic Bézier curves. The situation becomes much

more complicated, because cubic curves are uniquely determined by four control

points. In the past, we used the fact that quadratic curve lies in the plane. Hence,

we will consider the planar cubics first. We fix the three control points and we will

try to find (in the plane ρ) the set of admissible solutions for the remaining con-

trol point. We look for analytic conditions, which are visualized (e.g. by Asymptote).

An interesting topic covers considering rational curves in Minkowski space. Quad-

ratic case will be searched from the projective geometry point of view. The general

conditions for higher degree curves will be difficult to grasp. Hence, we consider cer-

tain classes such as rational curves with positive weight, convex curves and others

to gain insight into the structure of space-like curves.

In the case of general cubic curve, we plan to use the fact that the derivative of

cubic curve is a quadratic function although it might not be space-like. With the

fact that the end control points have to be space-like, we will try to get necessary

conditions for the control points or its linear combinations. If these are sufficient

conditions too, we verify it experimentally at first and theoretically later. We have

a hypothesis, that if the derivative is space-like (definition 1) along the curve and

end point is space-like, then the whole curve is space-like (definition 2). This leads

to certain class of cubic space-like curves putting together the results gained so far.

We try to combine the curve results to surface case for tensor-product surfaces.
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