Geometric Structures

2. Quadtree, k-d stromy

Martin Samuelčík
samuelcik@sccg.sk, www.sccg.sk/~samuelcik, I4
Window and Point query

- From given set of points, find all that are inside of given d-dimensional interval
- Solution using multi-dimensional range trees
 - Higher memory complexity
 - General for all dimensions
 - Adaptive construction based on given points
- Other solution—split using hyperplanes in one dimension—slower, but lower memory complexity
Quadtrees

- Each inner node of tree has exactly 4 siblings.
- Each node represents an area part of 2D space, usually square or rectangle, but other shapes are possible.
- 4 children of node represent split of node area into 4 smaller equal areas.
- 2D
Quadtree construction

- \(S \) – set of points in 2D
- Initial creation of bounding area for points in \(S \)
- Recursive

```cpp
struct QuadTreeNode
{
    Point* point;
    float left, right, bottom, top;
    QuadTreeNode* parent;
    QuadTreeNode* NE;
    QuadTreeNode* NW;
    QuadTreeNode* SW;
    QuadTreeNode* SE;
}

QuadTree
{
    QuadTreeNode* root;
}

QuadTreeConstruct(S)
{
    (left, right, bottom, top) = BoundSquare(S);
    QuadTree* tree = new QuadTree;
    tree->root = QuadTreeNodeConstruct(S, left, right, bottom, top);
    return tree;
}

QuadTreeNodeConstruct(P, left, right, bottom, top)
{
    v = new QuadTreeNode;
    v->left = left; v->right = right; v->bottom = bottom; v->top = top;
    v->NE = v->NW = v->SW = v->SE = v->parent = v->point = NULL;
    if (|P| == 0) return v;
    if (|P| == 1)
    {
        v->point = P.first;
        return v;
    }
    xmid = (left + right)/2; ymid = (bottom + top)/2;
    (NE, NW, SW, SE) = P.Divide(midx, midy);
    v->NE = QuadTreeNodeConstruct(NE, xmid, right, ymid, top);
    v->NW = QuadTreeNodeConstruct(NW, left, xmid, ymid, top);
    v->SW = QuadTreeNodeConstruct(SW, left, xmid, bottom, ymid);
    v->SE = QuadTreeNodeConstruct(SE, xmid, right, bottom, ymid);
    v->NE->parent = v; v->NW->parent = v;
    v->SW->parent = v; v->SE->parent = v;
    return v;
}
```
Quadtree search

- Finding point inside rectangle

\[B = [left, right, bottom, top] \]

QuadTreeQuery(tree, B)
{
 return QuadTreeNodeQuery(tree->root, B)
}

QuadTreeNodeQuery(node, B)
{
 List result;
 if (node == NULL)
 return result;
 if (B->left > node->right || B->right < node->left ||
 B->bottom > node->top || B->top < node->bottom)
 {
 return result;
 }
 if (node->point)
 result.Add(point);
 result.Add(QuadTreeNodeQuery(v->NE, B));
 result.Add(QuadTreeNodeQuery(v->NW, B));
 result.Add(QuadTreeNodeQuery(v->SW, B));
 result.Add(QuadTreeNodeQuery(v->SE, B));
 return result;
Quadtree properties

• Maximal depth of quadtree is $\log(s/c) + 3/2$, where c is smallest distance between points in S and s is length of one side of initial bounding square

• Quadtree of depth d with $|S| = n$ has $O(n.(d+1))$ nodes and can be constructed in time $O(n.(d+1))$

• Construction: $O(n^2)$

• Memory: $O(n^2)$

• Search: $O(n)$
Finding neighbor node

- For given node and corresponding area, find node and its area adjacent to given node in given direction
- Time complexity $O(d)$, d – height of tree

```cpp
NorthNeighbor(v, T)
{
    if (v == T->root) return NULL;
    if (v == v->parent->SW) return v->parent->NW;
    if (v == v->parent->SE) return v->parent->NE;
    u = NorthNeighbor(v->parent, T);
    if (u == NULL || u->IsLeaf()) return u;
    if (v == v->parent->NW)
        return u->SW;
    else
        return u->SE;
}

SouthChilds(v)
{
    List result;
    if (v == NULL) return result;
    if (v->IsLeaf())
        result.Add(v);
    result.Add(SouthChilds(v->SE));
    result.Add(SouthChilds(v->SW));
    return result;
}

NorthNeighbors(v, T)
{
    List result;
    North = NorthNeighbor(v, T);
    if (North == NULL)
        return result;
    return SouthChilds(North);
}
```
Balancing quadtree

- Balanced quadtree – each two adjacent areas has almost same size
- Balancing - simple adding empty subtrees
- If T has m nodes, then balanced version has $O(m)$ nodes and can be created in time $O(m(d+1))$
Balancing quadtree

- **CheckDivide** – checking, if node v has to be divided, finding if neighbor siblings are leaves or not
- **Divide** – dividing node of tree into four siblings, adding point from node to one sibling
- **CheckNeighbours** – if there unbalanced neighbours, then add neighbors to list L

```
BalanceQuadTree(T) {
    if (v == T->root) return NULL;
    L = T.ListLeafs();
    while (!L.IsEmpty())
    {
        v = L.PopFirst();
        if (CheckDivide(v))
        {
            Divide(v);
            L.add(v->NE); L.add(v->NW);
            L.add(v->SE); L.add(v->SW);
            CheckNeighbors(v, L);
        }
    }
}
```
Terrain visualization

- View above terrain surface – some parts are close, some away – using LOD (Level Of Detail), each part of terrain is rendered in some detail based on distance from camera
- Needed structure for storing all levels of detail for each part of terrain
- Terrain
 - Height field
Terrain visualization

- Creating complete quadtree over height filed
- Traversing tree during rendering – based on distance of camera and node area, the traverse is stopped or continued
Terrain visualization

- Problems with the edge between areas on different levels in quadtree
- Solution using triangulation = connection of two consecutive quadtrees
Terrain visualization
Isosurface generation

• Input are intensities given in uniform grid, output is curve or surface approximating one level of intensity

• Constructing complete quadtree, each node storing minimal and maximal intensity in subtree of node

• For homogenous intensity areas, no need for dividing

• „Marching Cubes“ algoritmus – constructing triangles or segments for each cell
Isocurve, isosurface generation
Bilinear interpolation in cell

- Computing end points of segments

\[X = \frac{5 - 4}{5 - 1} A + \frac{4 - 1}{5 - 1} C = \frac{1}{4} A + \frac{3}{4} C \]

\[Y = \frac{7 - 4}{7 - 1} A + \frac{4 - 1}{7 - 1} B = \frac{1}{2} A + \frac{1}{2} B \]

- Computing intensity for point inside cell

\[I_K = \frac{|X_y - A_y|}{|C_y - A_y|} I_5 + \frac{|C_y - X_y|}{|C_y - A_y|} I_1 \]

\[I_L = \frac{|X_y - B_y|}{|D_y - B_y|} I_9 + \frac{|D_y - X_y|}{|D_y - B_y|} I_7 \]

\[I_X = \frac{|X_x - A_x|}{|B_x - A_x|} I_L + \frac{|B_x - X_x|}{|B_x - A_x|} I_K \]
Quadtree for Marching Squares

- **Input is 2D array of intensities**
 \[P[i,j]; \ i = 0,\ldots,2^n \ ; \ j = 0,\ldots,2^m \]

```c
struct MCQuadTreeNode
{
    float MinIntensity;
    float MaxIntensity;
    float Corner1, Corner2;
    float Corner3, Corner4;
    MCQuadTreeNode* parent;
    MCQuadTreeNode* NE;
    MCQuadTreeNode* NW;
    MCQuadTreeNode* SW;
    MCQuadTreeNode* SE;
}

MCQuadTreeNodeConstruct(P, MinXIndex, MaxXIndex, MinYIndex, MaxYIndex)
{
    v = new MCQuadTreeNode;
    v->Corner1 = P[MinXIndex, MinYIndex]; v->Corner2 = P[MaxXIndex, MinYIndex];
    v->Corner3 = P[MaxXIndex, MaxYIndex]; v->Corner4 = P[MinXIndex, MaxYIndex];
    v->NE = v->NW = v->SW = v->SE = v->parent = NULL;
    (Min, Max) = GetMinMaxIntensities(P, MinXIndex, MaxXIndex, MinYIndex, MaxYIndex);
    v->MinIntensity = Min;
    v->MaxIntensity = Max;
    if (Min == Max)
        return v;
    MidXIndex = (MinXIndex + MaxXIndex) / 2;
    MidYIndex = (MinYIndex + MaxYIndex) / 2;
    v->NE = MCQuadTreeNodeConstruct(P, MidXIndex, MaxXIndex, MinYIndex, MaxYIndex);
    v->NW = MCQuadTreeNodeConstruct(P, MinXIndex, MidXIndex, MinYIndex, MaxYIndex);
    v->SW = MCQuadTreeNodeConstruct(P, MinXIndex, MidXIndex, MinYIndex, MidYIndex);
    v->SE = MCQuadTreeNodeConstruct(P, MidXIndex, MaxXIndex, MinYIndex, MidYIndex);
    v->NE->parent = v; v->NW->parent = v;
    v->SW->parent = v; v->SE->parent = v;
    return v;
}

struct MCQuadTree
{
    MCQuadTreeNode* root;
}
```

```c
MCQuadTreeConstruct(P, n, m)
{
    MCQuadTree* tree = new MCQuadTree;
    tree->root = MCQuadTreeNodeConstruct(P, 0, 2^n, 0, 2^m);
    return tree;
}
```
Marching Squares

MarchCubes(T, intensity, left, right, bottom, top)
{
 MarchCubesNode(T->root, intensity, left, right, bottom, top);
}

MarchCubesNode(v, intensity, left, right, bottom, top)
{
 if (intensity < MinIntensity || intensity > MaxIntensity)
 return;
 if (MinIntensity == MaxIntensity)
 return;
 if (v->isLeaf())
 if (v->isLeaf())
 CreateLinesInRectangle(left, right, bottom, top,
 v->Corner1, v->Corner2, v->Corner3, v->Corner4);
 return;
 float midx = (left+right) / 2;
 float midy = (bottom+top) / 2;
 MarchCubesNode(v->SW, intensity, left, midx, bottom, midy);
 MarchCubesNode(v->SE, intensity, midx, right, bottom, midy);
 MarchCubesNode(v->NE, intensity, midx, right, midy, top);
 MarchCubesNode(v->NE, intensity, left, midx, midy, top);
}
Raytracing

- Storing pointers to objects inside quadtree
- Finding neighbor cells in quadtree when traversing along ray
Visibility computation (Warnock)

- Computation in screen space
- Divide parts of screen using quadtree until simple cases occur
- In each leaf of quadtree, compute color of all pixels in node areas from nearest polygon
Representations
Octree

- Extension of quadtree in 3D space, solution of same or similar problems
K-d tree

• Input: set of points S from \mathbb{R}^d
• Query: d-dimensional interval B
• Output: set of points from S, that are inside set B

• Recursive construction:
 - Given set of points D from \mathbb{R}^d and split coordinate i
 - If D is empty, return empty node
 - If D contains 1 point, current node becomes leaf
 - Else compute split value s in i-th coordinate and based on this value divide D into two sets $D_{<s_i}$, $D_{>s_i}$ and for these two sets recursively construct two sibling nodes with increase coordinate i by 1

\[D_{<s_i} = \{(x_1, \ldots, x_i, \ldots, x_n) \in D | x_i < s\}, \]
\[D_{>s_i} = \{(x_1, \ldots, x_i, \ldots, x_n) \in D | x_i > s\}; \]
K-d tree construction

```c
struct KdTreeNode
{
    float split;
    int dim;
    Point* point;
    KdTreeNode* left;
    KdTreeNode* right;
    KdTreeNode* parent;
};

KdTreeNode Construct(D, dim, d)
{
    if (|D| = 0) return NULL;
    v = new KdTreeNode;
    v->dim = dim;
    if (|D| = 1)
    {
        v->point = D.Element;
        v->left = NULL;
        v->right = NULL;
        return v;
    }
    v->split = D.ComputeSplitValue(dim);
    D_\le = D.Left(dim, v->split);
    D_\ge = D.Right(dim, v->split);
    j = (dim + 1) mod d;
    v->left = KdTreeNode Construct(D_\le, j);
    v->right = KdTreeNode Construct(D_\ge, j);
    return v;
}
```

KdTree Construct(S, d)
{
 T = new KdTree;
 T->root = KdTreeNode Construct(S, 0, d);
 return T;
}

struct KdTree
{
 KdTreeNode* root;
};
• When searching for points inside given d-dimensional interval \(B \), we are working with areas representing each node of k-d tree \(Q \).

```plaintext
KdTreeNodeQuery(v, Q, B)
{
    List L;
    if (v->IsLeaf() && (v->point in B))
    {
        L.add(v->point);
        return L;
    }
    v_l := v->left;
    v_r := v->right;
    Q_l := Q.LeftPart(v->dim, v->split);
    Q_r := Q.RightPart(v->dim, v->split);
    if (Q_l in B)
        L.add(KdTreeQuery(v->left, Q_l, B));
    else if (Q_l \cap B != 0)
        L.add(KdTreeQuery(v->left, Q_l, B));
    if (Q_r in B)
        L.add(KdTreeQuery(v->right, Q_r, B));
    else if (Q_r \cap B != 0)
        L.add(KdTreeQuery(v->right, Q_r, B));
    return L;
}

Report(v)
{
    List L;
    if (v->IsLeaf() && (v->point))
    {
        L.add(v->point);
        return L;
    }
    L.add(Report(v->left));
    L.add(Report(v->right));
    return L;
}
```

KdTreeQuery(T, B)
{
 Q = WholeSpace();
 return KdTreeNodeQuery(T->root, Q, B);
}
K-d tree properties

- If split sets $D_{<s_i}$, $D_{>s_i}$ are almost equal (using for example median), then tree is balanced
- Balanced k-d tree in \mathbb{R}^d can be constructed in time $O(n \cdot \log(n))$ with memory complexity $O(n)$
- Query for searching using k-d tree in \mathbb{R}^d has time complexity $O(n^{(1-1/d)} + k)$, where k is cardinality of output
- High time complexity in worst cases (bad divide), expected complexity is $O(\log(n) + k)$
- Point insertion: $O(\log(n))$
- Point removal: $O(\log(n))$
K-d trees

• Trees variations: points stored not only in leaves, non-periodic change of split hyperplane, different ways for split and termination, two split hyperplanes.
K-d trees
K-d trees
Nearest neighbor search

• For set of points S from \mathbb{R}^d and one other point P from \mathbb{R}^d, find one point Q from S such that distance $|PQ|$ is minimal

• Extension – find k nearest neighbors, or alternatively k approximate nearest neighbors
Nearest neighbor search

```cpp
void FindNearestPoint(T root, P point) {
    Nearest neighbor = FindNearPoint(root, point);
    return FindNearestPoint(T, nearest_node, P);
}

void FindNearPoint(v, P point) {
    if (v.IsLeaf() && (v.point < nearest_point)) {
        nearest_node = FindNearestPoint(v->parent->right, nearest_node, P);
    } else {
        nearest_node = FindNearestPoint(v->parent->left, nearest_node, P);
    }
    return nearest_node;
}
```

```cpp
void SearchSubtree(v, nearest_node, P) {
    List nodes;
    nodes.Add(v);
    current_nearest = nearest_node;
    while (nodes.size() > 0) {
        current_node = nodes.PopFirst();
        if (current_node.IsLeaf() && (current_node.point < nearest_point)) {
            if (Distance(current_node.point, P) < Distance(nearest_node)) {
                if (current_node == current_node->parent->left) {
                    nearest_node = SearchSubtree(current_node->parent->right, nearest_node, P);
                } else {
                    nearest_node = SearchSubtree(current_node->parent->left, nearest_node, P);
                }
            }
            current_node = current_node->parent;
        }
    } return current_nearest;
}
```

```cpp
void FindNearestPoint(T root, P point) {
    Nearest neighbor = FindNearPoint(root, point);
    return FindNearestPoint(T, nearest_node, P);
}
```

```cpp
KdTreeNearestNeighbor(T root, P point) {
    near = FindNearPoint(T->root, point);
    return FindNearestPoint(T, near, P);
}
```
Nearest neighbor search

- First step: find node (leaf of k-d tree) containing point that is near to point P
- Second step: From this leaf, traverse tree back to root and search for nearer points stored in opposite subtrees
- Time complexity: $O(d \cdot n^{(1-1/d)})$
- For random distribution of points, expected time complexity is $O(\log(n))$

- http://dl.acm.org/citation.cfm?id=355745
- http://dimacs.rutgers.edu/Workshops/MiningTutorial/pindyk-slides.ppt
Nearest neighbor search

Mnoho navštívených vrcholov

Málo navštívených vrcholov
k nearest neighbors

- Extension of previous algorithm
- Instead of sphere with 1 actually nearest point, we have sphere containing k actually nearest points
- If the sphere in one moment contains less than k points, its radius is infinite
- In first step, we find k potentially nearest points instead of 1
k nearest neighbor search

```cpp
Struct SearchRecord
{
    vector<KdTreeNode> points;
    float radius;
}

KdTreeNearestNeighbors(T, P, k)
{
    SearchRecord result;
    FindNearPoints(T->root, P, k, &result);
    FindNearestPoints(T, P, k, &result);
    return result;
}

FindNearPoints(v, P, k, result)
{
    if (v->IsLeaf() && (v->point))
    {
        result->points.Add(v);
        result->UpdateRadius(P);
        return;
    }
    if (InLeftPart(P, v->dim, v->split))
    {
        FindNearPoints(v->left, P, k, result);
        if (result->points.size < k)
            FindNearPoints(v->right, P, k, result);
    }
    else
    {
        FindNearPoints(v->right, P, k, result);
        if (result->points.size < k)
            FindNearPoints(v->left, P, k, result);
    }
}
```
FindNearestPoints(T, P, k, result)
{
 current_node = result->points[0];
 while (current_node != T->root)
 {
 hyperplane_distance = Distance(P, current_node->parent->dim, current_node->parent->split);
 if (hyperplane_distance < result->radius)
 {
 if (current_node == current_node->parent->left)
 SearchSubtree(current_node->parent->right, P, k, result);
 else
 SearchSubtree(current_node->parent->left, P, k, result);
 }
 current_node = current_node->parent;
 }
 return;
}

SearchSubtree(v, P, k, result)
{
 List nodes;
 nodes.Add(v);
 while (nodes.size() > 0)
 {
 current_node = nodes.PopFirst();
 if (current_node.IsLeaf() && (current_node->point)
 {
 if (Distance(current_node->point, P) < result->radius)
 {
 result->points.AddNewAndRemove(current_node, P, k);
 result->UpdateRadius(P);
 }
 continue;
 }
 hyperplane_distance = Distance(P, current_node->dim, current_node->split);
 if (hyperplane_distance > result->radius)
 {
 if (InLeftPart(P, current_node->dim, current_node->split))
 SearchSubtree(current_node->parent->right, P, k, result);
 else
 SearchSubtree(current_node->parent->left, P, k, result);
 }
 else
 {
 if (nodes.size() > 0)
 nodes.PopFirst();
 else
 return;
 }
 }
 return;
}
Photon mapping

1. pass:
 - Shooting photons from light source in random directions
 - Computing intersections and bounces of photons in scene
 - Storing intersection points in map

2. pass:
 - Rendering from camera
 - Using light data from map (searching for k closest photons in map from surface point) for global illumination computation

Photon map structure = k-d tree
Point clouds

• Many construction possibilities: laser scanning, Kinect, structured light, ...

• Surface reconstruction – find continuous surface based on points
Surface reconstruction

- Searching for points inside given sphere
- Small modification of nearest neighbor search
Database

- Record in database = d-dimensional vector
- For input record, find most similar record in database = nearest neighbor search
vp (Vantage-point) tree

- Binary tree, each node contains center point \mathbf{P} and radius r, in left subtree are points with distance \mathbf{P} less than r, in right subtree are all other points
- Pick \mathbf{P} – random point
- Pick r – median of distances of \mathbf{P} and all other points
Raytracing

- K-d tree is best space partition for raytracing (minimalizing ray-object intersection count)
- Adaptively divide based on surface
- Traversing structure along ray
Raytracing

• Divide in node
 – Spatial median
 – Object median
 – Direction – largest variation
 – In center in direction of “longest” dimension
 – Cost techniques
 • Computing split cost based on ray-area hit probability (ordinary surface area heuristic)

\[C_{vG} = \frac{1}{SA(\mathcal{A}B(v^G))} \left[SA(\mathcal{A}B(lchild(v^G))).(N_L + N_{SP}) + SA(\mathcal{A}B(rchild(v^G))).(N_R + N_{SP}) \right], \]
Questions?