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Abstract 

 

Nowadays we are facing the transition from desktop PCs to mobile devices. We use them to 

watch TV, stream video from the Internet and to make video calls and video conferences. 

The video is compressed before being stored and transmitted, which makes it sensitive to 

errors. The errors frequently appear in wireless networks, especially in areas with poor signal 

coverage or in places with too many devices. Lost or corrupted packets cause subsequent 

macro blocks to be marked as corrupted by the decoder. The impact of transmission errors 

can be minimized in the receiver through error concealment. 

Error concealment is an error control technique capable of mitigating the error effects on 

multimedia using all the available decoded data (both correctly received and erroneous). 

Recently published over-segmentation algorithms operating in real-time have opened new 

ways of error concealment for streamed videos. We introduce a fast error concealment 

technique where the corrupted regions are restored by texture extrapolation from the 

surrounding regions logically associated through image segmentation. Our method can 

faithfully complete the texture and edges in the missing areas. However, areas in the image 

containing unsharp edges or gradients, which are difficult to segment properly, are the main 

problem producing artifacts in the result. Therefore, in addition we propose an extended 

form of segmentation which adds soft edges to the segments and allows them to overlap. As 

result the unsharp edges and gradients are maintained in the concealed parts of the image. 

In the second part of the thesis we address the image segmentation in more detail. The Final 

segmentation of an over-segmented image is usually obtained by merging neighboring 

regions based only on their color similarity. We propose a novel method that in addition 

classifies the image regions based on their texture features and we show that this 

improvement leads to better results. 

Keywords: error concealment, fuzzy segmentation, texture extrapolation, video and image 

coding, texture features extraction 

  



 

Abstrakt 

 

V súčasnej dobe čelíme prechodu od stolových počítačov k mobilným zariadeniam. 

Používame ich na pozeranie televízie, streamujeme video z internetu a robíme video hovory 

a video konferencie. Video je pred uložením a prenosom komprimované a to ho robí citlivým 

na chyby. Chyby sa často objavujú v bezdrôtových sieťach, predovšetkým v oblastiach 

so slabým pokrytím signálu alebo na miestach s príliš veľkým počtom zariadení. Stratené 

alebo poškodené pakety spôsobia, že za sebou idúce makro bloky sú dekodérom označené 

ako poškodené. Vplyv prenosových chýb môže byť v prijímači minimalizovaný pomocou 

maskovania chýb. 

Maskovanie chýb je technika regulácie chýb schopná zmierniť efekty chýb v multimédiách 

s využitím všetkých dostupných dekódovaných dát (správne prijatých a tiež poškodených 

dát). Nadsegmentačné algoritmy bežiace v reálnom čase otvorili cestu k ich využitiu 

v aplikáciách pre streamované videá. Predstavujeme rýchlu techniku maskovania chýb, 

v ktorej sú poškodené oblasti obnovené extrapoláciou textúry z okolitých oblastí logicky 

asociovaných pomocou segmentácie obrazu. Naša metóda dokáže verne doplniť textúry a 

hrany v chýbajúcich oblastiach. Avšak oblasti v obraze obsahujúce neostré hrany alebo 

prechody, ktoré je ťažké správne vysegmentovať, sú hlavnou príčinou vzniku artefaktov 

vo výsledku. Preto navyše navrhujeme rozšírenú formu segmentácie, ktorá segmentom 

pridáva jemné hrany a umožňuje im prekrývať sa. Výsledkom je zachovanie neostrých hrán 

a prechodov v zamaskovaných častiach obrazu. 

V druhej časti práce sa hlbšie venujeme segmentácií obrazu. Finálna segmentácia z 

nadsegmentovaného obrazu sa zvyčajne získa zlúčením susedných oblastí len na základe ich 

farebnej podobnosti. Navrhujeme novú metódu, ktorá klasifikuje oblasti obrazu aj na základe 

čŕt ich textúr, čo vedie k lepším výsledkom. 

Kľúčové slová: maskovanie chýb, fuzzy segmentácia, extrapolácia textúry, kódovanie videa 

a obrazu, extrakcia čŕt textúry 
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Chapter 1

Introduction

Communication plays an important role in our lives. This is as much true today as it has been
in the past and will be in the future. After the language, visual communication is the most
important way of communicating. Among many types of visual communication, the video
is one of the most powerful ways of visual communication and it has become an integral
part of the modern culture. In the last decade many video services and devices have changed
and improved. Mobile phones are frequently used to capture video or to stream video from
internet. Video calls and video conferences over the internet are very common. Digital
television is widespread in the world in contrary to analogue television that has already been
switched off in many countries. Quality of video services like video streaming or video calls
is still variable but it continues to improve. In order to stream video data over channels with
a limited bandwidth it is being compressed before storage and transmission, which makes it
sensitive to errors. Transferring images and videos requires a fast and reliable transmission
channel. However, in wireless networks we often encounter high error rates, especially in
areas with poor signal coverage or in places with too many devices. Fortunately, various
signal processing algorithms allow to detect and conceal such errors.

Image texture analysis is a fundamental problem in image processing and an important area
in computer vision [26]. Indeed, textures are important parts of natural and architectural
scenes including both man-made and natural objects which in turn makes them to essential
attributes in visual content based image analysis. Bricks, stones, sand, leaves, or grass, are
just a few examples of regular and irregular structures that make objects appear textured.

The term texture is widely used and easily comprehensible. However, our intuitive under-
standing of this phenomena is so strong, that no exact definition exists. Some of the technical
definitions describe a texture as a "discrete 2D stochastic field with a given governing joint
probability density function"[44] or a "repetitive arrangement of a unit pattern over a given
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1.1. MATHEMATICAL FORMULATION OF THE IMAGE AND VIDEO ERROR
CONCEALMENT PROBLEM

area"[52]. Human observers mostly describe a given texture by its qualitative attributes like
smoothness or roughness, fineness or coarseness which are easily perceived by their senses.
These properties are again intuitively clear, yet relative and hard to measure[60].

Automatic processing of images by their visual content has become an interesting and dy-
namic research area [26] in recent years. Its goal is to automatically process and analyze the
image based on different features such as color, shape and texture. These features are then
used to segment images into regions and to classify them.

The aim of the segmentation is to simplify an image into a more meaningful representation
that is simpler to analyze [62, 55]. Image segmentation is typically used to locate objects and
boundaries in images. Among the prominent practical applications of image segmentation
are content-based image retrieval, machine vision and medical imaging for surgery planning
and diagnostics. Recently published real-time over-segmentation algorithms [13, 48] opened
ways to utilize segmentation in applications for streamed videos.

1.1 Mathematical Formulation of the Image and Video Er-
ror Concealment Problem

Error effects in transmitted image or video depend on the position of the error in the multime-
dia file and on the error resilience mode chosen to secure the information bits. The position
of an error is a factor affecting the overall file validity. An error located in the header can
cause a degradation prohibiting valid recognition of the multimedia file. However, due to
a small amount of header bits relative to the information bits and due to the possibility of
implementing an Automatic Repeat reQuest (ARQ) method to retransmit the corrupted bits,
error control techniques commonly assume correct header reception and errors located ex-
clusively in payload. The most commonly used error resilience modes for images and videos
work with blocks. Therefore, erroneous or missing data immediately damages whole blocks
or block clusters. We build upon these assumptions in the image and video error conceal-
ment problem formulation.

Mathematically, image and video error concealment is an ill-posed inverse problem since
there is no well-defined unique solution. Let Ω be the corrupted part of an image I (see Fig.
1.1), then the error concealment problem can be defined as: ∀p ∈ I

χ :

∣∣∣∣∣ Ω ⊂ Rn→ Rm

p 7→ I (p)
(1.1)

12



1.2. CONTRIBUTIONS

Source region Φ 

Corrupted region Ω 

Figure 1.1: An example of regions in a corrupted image.

where m = 3 for RGB color images and n refers to the data dimension, i.e. n = 2 (p = (x, y))
for image pixels, respectively n = 3 and p = (x, y, t) for videos. The known region named
the source region is then defined as Φ = I\Ω .

1.2 Contributions

This thesis contains two main contributions that are new methods for:

• image error concealment

• texture classification of arbitrarily shaped regions with an application in image seg-
ment merging

We briefly describe our motivation for both methods and the methods themselves in follow-
ing two sections.

1.2.1 Proposed Error Concealment Method

In this work we present a novel technique for concealment of corrupted image macroblocks
utilizing basic principles of extrapolation from uncorrupted neighboring regions into the cor-
rupted areas. Fast frequency selective extrapolation methods [54, 34] use a straight forward
approach which extrapolates every pixel falling within the rectangular surroundings of the
lost area. Such approximation of various textures leads to a mixture and in the resulting ex-
trapolation it creates undesirable artifacts. Similarly, we often encounter artifacts when using
simple patch-based methods [15, 16] which inpaint the corrupted area by copying patches

13



1.2. CONTRIBUTIONS

from the uncorrupted surroundings of the missing area. To avoid such artifacts we propose
to add a segmentation step into the process of error concealment. By using one of the real
time over-segmentation algorithms [48, 13] the added segmentation step has minimal effect
on the computational time. Its high processing speed is very important for the algorithm
intended for streamed video.

High quality image reconstruction can be achieved using e.g. complex patch-based method
[17] or group-based method [84], but run times of these methods are several orders of magni-
tude longer compared to the mentioned fast methods. Our algorithm is focused on improve-
ment of quality for fast image restoration in the time span of a few seconds.

Our method starts with image segmentation. Based on image segmentation, it selects only
the most relevant uncorrupted pixels for the texture extrapolation. By dealing with each
segmented region separately, we can avoid artifacts. However, the segmentation in the cor-
rupted areas is missing and needs to be estimated first. We developed a new algorithm for
completion of the segmentation that is based on shape error concealment techniques for sin-
gle objects. Each corrupted segment is considered as an object the shape of which should
be completed. Our key contribution is the extension of shape error concealment techniques
for single objects to segmented images with each corrupted segment being a small object to
conceal. Connectivity of neighboring segments and of segment pieces cut by the lost area
into several pieces is the main challenge.

The main drawback of using the segmentation is a high level of uncertainty regarding the
segment borders in image areas containing unsharp edges or gradients. Repaired segments
consequently include unexpected sharp edges. Therefore, we propose an extension for our
method that utilizes a fuzzy segmentation. Segments in the fuzzy segmentation include soft
edges and are allowed to overlap. As result the soft edges and gradients are maintained in
the concealed image.

The last step of our algorithm is the texture extrapolation into lost areas from their surround-
ing regions logically associated by the segmentation. First, we approximate the texture of the
uncorrupted part of a segment using an orthogonal transform such as Discrete cosine trans-
form or Discrete Hartley transform. We define basis functions of the orthogonal transform
over the entire area of the segment and therefore each approximation of the uncorrupted part
also provides an estimation of the missing texture in the corrupted part of the segment.

To assess the quality and speed of our concealment method we compared the results with
three state of the art inpainting techniques: Image Melding [17], Spatial Patch Blending [16]
and Group-based Sparse Representation [84]. Experimental results clearly demonstrate a
qualitative improvement of the error concealment capability of our texture aware method

14



1.3. OUTLINE OF THE THESIS

over the simple patch-based method that just copies patches from the neighborhood of the
corrupted regions. The sophisticated patch and group-based methods are able to provide
better results, but their run-times are not feasible in real-time applications such as video
streaming.

1.2.2 Texture Classification of Arbitrarily Shaped Regions with an Ap-
plication in Image Segment Merging

For the image over-segmentation in our error concealment method we use a fast superpixel
generation algorithm based on k-means clustering in the CIE L∗a∗b∗ space extended by
spatial pixel coordinates. To decide whether the neighboring superpixels should be merged
(in order to create the resulting segments) the mean L∗a∗b∗ values are compared. However,
it reflects only the color similarity of two superpixels. We propose to compare not just the
color of superpixels, but also their texture. Most of the existing methods for extracting texture
features are not suitable for arbitrarily shaped regions and they can only extract the features
from a rectangle inscribed into the region. We developed a novel approach that is able to
extract texture features from the whole irregular region using Discrete orthogonal transforms
(DOTs). Orthogonal transforms applied to arbitrarily shaped superpixels produce spectral
matrices with various dimensions. Before comparing spectral coefficients the dimensions
have to be unified. We prove that by a specific insertion of zeros into the spectra of the
Discrete Walsh-Hadamard transform or into the separable Discrete Hartley transform we
can achieve a texture periodification in spatial domain.

To demonstrate the proposed method’s functionality we provide results of the classification
obtained for arbitrarily shaped regions in several images with artificially created textures
and results with images containing textures from natural scenes. We also made several ex-
periments with corrupted images in order to examine the method capability to be used in
superpixel classification before they get merged into the final image segments. The results
are extremely promising and suggest the proposed method has wide applicability in image
processing.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. In next chapter we explain why the errors in
videos and images appear and we also describe how they can be detected.

15



1.3. OUTLINE OF THE THESIS

Chapter 3 starts with the state of the art report on the existing image error concealment meth-
ods. Based on limitations of existing methods we propose a new method that we describe in
detail in the same chapter. In the end of chapter 3 we evaluate our method against the state
of the art methods.

In the first part of chapter 4 we analyze existing methods for texture features extraction.
Based on the analysis we introduce a new method for texture classification of arbitrarily
shaped regions. We close the chapter by the evaluation of the proposed method and we also
propose an application of our method in tasks of image segment merging.

Chapter 5 contains conclusions of the thesis and suggestions for future work.

16



Chapter 2

Video and Image Errors

In this chapter we explain why errors appear in videos and images. We also describe how
they can be detected and treated.

2.1 Video and Image Compression

Video and image compression or encoding is the process of reducing the amount of data
required to represent a digital video / image signal [50]. It is usually performed before the
data is stored or transmitted. The complementary operation, decompression or decoding,
recovers a digital video / image signal from its compressed representation. This process is
usually performed before displaying the data. Raw digital video / image data is usually very
large and therefore encoding and decoding are essential for any application in which storage
capacity or transmission bandwidth is limited. Almost all common applications for digital
video fall into this category. These are few examples of such applications (see also Fig. 2.1):

• Digital television broadcasting: TV programs are coded before their transmission over
a limited bandwidth of satellite, cable or terrestrial channel.

• Internet / mobile video streaming: Video is coded and stored on a server. The coded
video is streamed over the internet / mobile network (e.g. GSM, GPRS, EDGE), de-
coded on a client device and displayed.

• Video on Digital Storage Media (DSM): Source video is coded and stored on a DSM
(e.g. Blu-ray Disc, DVD, Flash Disc). A digital media player reads the DSM and
decodes video for display.

17



2.1. VIDEO AND IMAGE COMPRESSION

Video source

Encode

Broadcast
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Channel

TV
receiver

Network
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Figure 2.1: Video coding scenarios[50].

All examples above include an encoder, which encodes (compresses) an input video signal
into a coded bitstream, and a decoder, which decodes (decompresses) the coded bitstream
and produces the output video signal. The encoders are often built into the devices such as a
video cameras. Decoders can be built in as well, for example into video players.

Data compression is achieved by removing redundancy, i.e. components that are not neces-
sary for faithful reproduction of the data [51]. If some data contains statistical redundancy,
it can be effectively compressed using lossless compression. By decoding data compressed
losslessly we get the exact copy of the original data. However, lossless compression of im-
age and video data gives very small amount of data reduction. Therefore, to reduce the
amount of image and video data a lossy compression is commonly used. When using a lossy
compression, after decoding the resulting data is not identical to the source data anymore.
Higher compression ratios can be obtained at the expense of lower visual quality. Lossy
compression systems are based on the principle of removing subjective redundancy [51], i.e.
elements of the image or video sequence which can be discarded without significant decrease
of the visual quality.

Image compression methods exploit spatial redundancy, video compression utilizes both spa-
tial and temporal redundancy to obtain data reduction. In the temporal domain, there is often
high correlation (similarity) between frames which were captured at around the same time.
Temporally adjacent frames are usually highly correlated, in particular in videos with high
frame rates. In the spatial domain, there is often high correlation between pixels that are
close to each other. For illustration of both types of redundancy see Fig. 2.2.
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spatial correlation

temporal correlation

Figure 2.2: Spatial and temporal correlation in two successive video frames [51].

Compressed videos and images are sensitive to transmission errors. In wireless networks we
often encounter high error rates, especially in areas with poor signal coverage or in places
with too many devices. Transmission errors such as bit errors or packet loss can cause large
damage in decoded data. In compressed images and videos, where the spatial redundancy
was removed, the errors can spatially propagate to neighboring pixels. And in compressed
video, where the temporal redundancy was removed, the errors can propagate to the follow-
ing frames. Spatial and temporal error propagation are illustrated in Fig. 2.3.

corrupted area

error position

forward prediction

Figure 2.3: Spatial and temporal error propagation [51].
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Figure 2.4: Simplified architecture of a video / image communication system [58, 79].

2.2 Error Resilient Video and Image Coding

A video / image communication system (see simplified architecture in Fig. 2.4) starts by
compression of the input digital video / image data. The compression is performed by a
source encoder, which contains symbolic and entropy encoders [58].

The symbolic encoder removes most of the redundancy that the input data has. For example,
image can be transformed using some orthonormal transforms based on frequency decom-
positions like Discrete cosine transform (DCT) or Discrete Fourier transform (DFT) [79].
These transforms can be applied to the entire image, but usually they are applied to relatively
small blocks of pixel values. The block transform is invertible and no data compression ac-
tually occurs there. The compression is performed by a quantizer that chooses representative
values of the transformed data.

The entropy encoder converts the representative values (outputs of the quantizer) to efficient
variable-length code words. Variable-length codes (VLC), such as Huffman codes or arith-
metic codes, are able to significantly decrease the amount of data. On the other hand, if
during the transmission over the channel some error occurs, VLC with a complete code tree
(in the sense that all binary strings are possible, e.g. Huffman codes) can cause that the de-
coder will not notice the error and will continue to decode with errors. The solution for this
is to insert markers such as end of block (EOB) and other synchronization words into the
coded bitstream. Markers are used to terminate or at least to control the error propagation.
They are added into the coded bitstream by the channel encoder.
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After the data has been transmitted over the communication channel the inverse operations
are executed in order to get the decoded video / image. Double sided arrows are used in Fig.
2.4 to show that the decoder can ask the encoder to retransmit some important failed data.

To transmit a compressed video or image over error-prone networks, error resilience tech-
niques are needed. According to Soares [59] there are three main types of error resilience
techniques:

1. Error resilient source coding – These techniques deal with the conversion of the in-
put digital video / image into an efficient, resilient representation. More error resilient
representation generally means less compression efficiency, but it helps to stop error
propagation. The problem of these techniques is that they influence the coding syntax
used by both encoder and decoder for their communication and have to be standard-
ized. It generally means that after a standard is defined, these techniques can no longer
be changed or updated.

2. Channel coding and decoding – We have already mentioned that channel encoder sys-
tematically inserts additional bits into the coded bitstream to make it possible to detect
errors. Channel coding and decoding is mostly independent from source coding and
decoding. But sometimes the joint source-channel coding is used. It is useful when
we want to scale the level of protection for different types of data to be transmitted,
e.g. motion vectors or texture data. Since channel coding clearly influences the com-
munication syntax between the encoder and decoder, it has to be standardized as well.
Usually it is not part of the video / image coding standards, but it is defined by transport
standards.

3. Error resilient decoding and concealment – These techniques minimize the negative
impact of transmission errors in the final video / image that will be displayed. For the
error concealment all available decoded data (correctly received and also erroneous
data) are used. Since this type of techniques does not depend on the coding syntax of
the encoder and decoder, they do not have to be standardized and new improvements
can be easily adopted in practice.

In our work we focus on the last type of error resilient techniques and we will describe them
in more detail in the following sections.

2.2.1 Error Resilient Decoding and Concealment

The error resilient decoding and concealment includes all the techniques that allow the de-
coder to lower the negative effect of errors by utilizing the available corrupted and correctly
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decoded data. The decoder generally goes through three successive steps [59]:

1. Error detection – recognizes if any errors occurred

2. Error localization – finds out with the highest possible precision, where the detected
error(s) appeared

3. Error concealment – decreases the negative impact of the localized errors

2.2.1.1 Error Detection

One of the error detection techniques is the detection of syntactic inconsistencies in the
source coded bitstream. An example for a syntactic inconsistency is an unexpected occur-
rence of a marker in the middle of the data or the absence of a marker where it was expected,
e.g. at the end of a data block.

The errors can also be detected based on semantic inconsistencies in the source coded bit-
stream. For instance a semantic inconsistency occurs if the count of macroblocks is different
from the one indicated after a resynchronization marker.

2.2.1.2 Error Localization

Localization of errors is essential for their concealment, since the better the error localiza-
tion, the smaller amount of correct data must be discarded. The error localization can be
performed by exploiting the error resilient entropy coding. For example, Reversible Variable
Length codes (RVLC) [63] can be used to localize the errors as illustrated in Fig. 2.5. If
RVLC codes are used and an error occurs, all the data up to the next marker is skipped and
then a backward decoding process is started. It helps to better locate the occurrence of the
error and to minimize the discarding of correct data.

Error detection

Forward decoding Backward decoding

Discarded data

Synchronization point Synchronization point

Figure 2.5: Error localization capability of RVLC codes [58].
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(a) (b)

Figure 2.6: Video frames with erroneous 8×8 blocks aligned with the 8×8 block grid [58].

Since errors are many times detected too late after they occur, some corrupted texture data is
“correctly” decoded. It can lead to very strange and visible image artifacts like for example
green 8×8 blocks aligned with the 8×8 block grid in Fig. 2.6 (a). These artifacts may
be detected by post-processing techniques such as looking for strong image discontinuities
aligned with the coding grid or defining some constraints, e.g. in terms of color saturation.
For instance, in a video telephone application, it is reasonable to assume that 8×8 blocks
with highly saturated colors e.g. of green or pink are unlikely (see Fig. 2.6 (b)). Hence,
such blocks can also be considered erroneous. However, criteria that might be reasonable for
one application may not be for another. 8×8 blocks with saturated colors might exist in an
application including synthetic image or video content. The post-processing techniques can
be switched off if desired since they always involve a probability of detecting false positives,
although only a very low one.

2.2.1.3 Error Concealment

After the errors are detected and localized, the decoder can start to conceal them. The con-
cealment process is always based on some sensible assumptions, which may depend on the
type of application and content involved. Video error concealment techniques can be classi-
fied into the three categories, depending on the data that is used [58]:

1. Spatial error concealment – only data from the current time instant is used to conceal
the errors. Corrupted areas in the current video frame are recovered using the data
from the surrounding correctly decoded areas of the same frame. This approach can
have serious problems, if the corrupted area is quite large, in particular if it is very
inhomogeneous. On the other hand, these techniques work relatively well for smaller
or homogeneous areas and in sequences where there is very little temporal redundancy
such as a first frame of video sequence after a scene cut or in the first frame of an
entirely new video sequence.
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2. Temporal error concealment – data from other (mostly previous) time instants is used
to conceal errors. When these techniques are applied to sequences where a large tem-
poral redundancy exists, the results are usually very good. But if the decoder tries to
fix the image in the current time instant with data from images in surrounding time
instants which are completely different, for example at a scene cut, serious problems
can appear.

3. Spatio-temporal error concealment – data from both the current time instant and other
time instants is used. These techniques try to get the best of both the spatial and the
temporal concealment techniques. Some parts of the image might be concealed us-
ing spatial concealment, some parts by using temporal concealment and other parts by
using both methods. Ideally, each of these solutions should be used for the parts of
the image that are spatially, temporally or both spatially and temporally very homoge-
neous, respectively.

In our work we focus on spatial error concealment techniques because these techniques can
be used not just for videos, but also for static images. We target to real time or nearly real time
techniques that can be used for the error concealment of images and also for concealment of
video frames of transmitted videos.
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Chapter 3

Image Error Concealment

3.1 Related Work

One of the first algorithms for concealment of transmission errors proposed by Shirani et al. [56]
is based on the Markov random fields method. It focuses on preserving important visual fea-
tures and edges, but it fails in completing of textures.

Zhai et al. [83] introduced a block-based bilateral filtering algorithm which extends the
classic bilateral filtering by operating in block-wise manner. The method has the ability
to capture the block-level similarity which suits the needs of error-concealment for block
based image compression. Although this method can complete a texture by copying the
entire blocks, it works well only if the blocks have uniform textures. The method also has
problems if several consecutive blocks in a row are corrupted, what happens unfortunately
very frequently.

Sparse linear prediction estimator proposed by Koloda et al. [35] recovers lost regions in
images by filling them sequentially with a weighted combination of patches that are extracted
from the available neighborhood. The weights are obtained by solving a convex optimization
problem that arises from a spatial image model. However, this method is again suitable only
for concealment of isolated blocks.

3.1.1 Frequency-selective Methods

A different approach for image error concealment is the frequency-selective extrapolation
(FSE) by Kaup et al. [32]. Correctly received parts of the image are approximated by a
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Figure 3.1: Concealment of block losses using the frequency selective extrapolation tech-
nique by Kaup et al. [32]. Left: Consecutive 16 × 16 block losses. Right: Image with errors
concealed.

set of basis functions, which are defined over a square area covering both uncorrupted and
corrupted parts of the image. Approximation of correctly received data is an iterative process
of minimizing error through successive selection of the most dominant basis functions. The
FSE is able to consistently expand the signal (i.e. image) with different content such as
image with texture or edges or a simple smooth color image (see the example result in Fig.
3.1).

A more recent implementation of a complex FSE method by Seiler et al. [54] provides simi-
lar quality reconstruction with a 10× shorter runtime. This algorithm iteratively generates a
model of the signal to be extrapolated as a weighted superposition of Fourier basis functions.

The latest modification of the FSE by Koloda et al. [34] is based on a priori information about
the low pass behavior of the natural images. Without this assumption, FSE may introduce
high frequency artifacts into the image reconstruction. The added low pass filtering of the
residual errors in the iterative process of FSE produces slightly improved results, but it also
increased the computational complexity a bit.

The problem of FSE methods in general is that they always approximate the square sur-
rounding of the lost area that may often contain parts of the image with unrelated textures.
Approximation of the square area containing multiple different textures is more time con-
suming than approximation of the area with a single texture and the result does not achieve
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sufficient quality.

3.1.2 Inpainting Methods

Another significant group of methods that are not primarily designed for concealment of
transmission errors, but can be used for this purpose are the so called inpainting methods.
Inpainting methods can be divided into two principal categories: geometry-based methods
and pattern-oriented methods.

3.1.2.1 Geometry-based

The concept behind of one of the first geometrically-based inpainting methods by Bertalmio
et al. [12] is to smoothly propagate information from the surrounding areas in the isophotes1

direction. The most important problem lies in the fact that the method is unable to reproduce
the texture into larger areas. Moreover, it takes a few minutes to obtain the result using a
standard desktop PC.

Vector-valued image regularization with PDEs [64] smooths the input image before it is
converted into a vector image. The method has various applications, such as e.g. enlargement
of the image, smoothing and noise removal, and can also be used to complete small corrupted
areas. But as you can see in the Fig. 3.2 the inpainting result is too blurred.

The method by Sun et al. [61] allows the user to identify important structures in the image
through an application interface. Line segments or curves can be used to mark how the
structures should continue in an unknown area. An example of a such a structure can be
a window frame, ladder or the border of the horizon or the silhouette of mountains in an
image from nature (see Fig. 3.3). On the one hand it is an advantage that the user has the
opportunity to improve the result, but on the other hand the image completion is not fully
automatic, thus, not suitable for concealment of transmission errors.

3.1.2.2 Pattern-based

One of the first pattern-oriented inpainting methods by Efros and Leung [21] synthesizes
the texture by growing a new image outward from an initial seed, one pixel at a time. A
Markov random field model is assumed and the conditional distribution of a pixel given all

1isophote - a contour of equal luminance in an image
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(a) Original image (b) Inpainting mask (c) Inpainted image

(d) Detail of original image (e) Detail of inpainted image

Figure 3.2: Using Vector-valued regularization PDE’s [64] for image inpainting.

Figure 3.3: Image Completion with Structure Propagation by Sun et al. [61]: The first col-
umn shows original images. The second column shows unknown regions (blue) and input
curves (green). The third and fourth columns are completion results after structure propaga-
tion and the final results after texture propagation, respectively.
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Figure 3.4: Texture Synthesis by Efros and Leung [21]: given a sample image (left), the
algorithm synthesized four new images with square neighborhood windows of width 5, 11,
15, and 23 pixels, respectively. The window size perceptually intuitively corresponds to the
degree of randomness in the resulting textures.

its neighbors synthesized so far is estimated by querying the sample image and finding all
similar neighborhoods. The degree of randomness is controlled by a single perceptually
intuitive parameter (see the Fig. 3.4). The method aims at preserving as much of the local
structure as possible and produces satisfying results for a wide variety of synthetic and real-
world textures. It can be used as an inpainting method if the hole to be completed can be
filled by a single texture. For more complex images with lots of different textures, this
method fails. Moreover, it is very slow, since the texture is synthesized pixel-wise.

The inpainting method by Criminisi et al. [15] is based on patch-based modeling of an image.
When compared to the previous method [21] which progresses by pixels, this method fills the
missing region by copying large parts of the surrounding image, i.e. patches. This approach
improves the processing speed and the accuracy of the completed structures. In addition, the
method introduced the principle of following of saliency edges and their primary completion
(see the Fig. 3.5). However, this principle only works for straight lines and can not cope with
a rounded or curved edges.

The key idea of the method by Mansfield et al. [37] is that the patches remain similar under
a variety of transformations such as scale, rotation and brightness change (see an example
with rotation in the Fig. 3.6). The problem is that enumeration of the all possible transfor-
mations is computationally too expensive. Without setting up a few basic user restrictions
(e.g. limiting or not using some transformations) this method could run for several hours.
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(a) (b) (c) (d) (e)

Figure 3.5: Removing large objects from photographs by Criminisi et al. [15]. (a) Original
image. (b) The target region (in white with red boundary) covers 12% of the total image area.
(c,d) Different stages of the filling process. Notice how the isophotes hitting the boundary of
the target region are propagated inwards while thin appendices (e.g., the arms) in the target
region tend to disappear quickly. (e) The final image where the bungee jumper has been
completely removed.

Therefore the authors of this method proposed to explore the usage of different optimization
methods to search for the best patches and they also use methods such as automatic detection
of recurrent elements or symmetry.

So far, probably the best visual results are achieved by Image Melding [17] (see Fig. 3.7)
built upon a patch-based optimization foundation with three key generalizations: (1) The
enriched patch search space with additional geometric and photometric transformations. (2)
Image gradients integrated into the patch representation and replacement of the usual color
averaging with a screened Poisson equation solver. (3) A new energy computation based
on mixed L2/L0 norms for colors and gradients that produces a gradual transition between
sources without sacrificing texture sharpness. The issue with Image Melding is that it is very
time consuming.

Daisy et al. proposed a spatial patch blending technique [16] to reduce artifacts of patch-
based inpainting methods (see Fig. 3.8). The technique first searches for artifacts and sub-
sequently it conceals them. Authors of this technique implemented both: the method by
Criminisi et al. [15] together with their proposed concept [16] as a free plug-in for the
graphic software GIMP, making it available to the public. The method is very fast, but it
does not achieve as good results as the Image Melding [17].

Authors of the Group-based Sparse Representation (GSR) method [84] claim that the tradi-
tional patch-based sparse representation modeling of natural images usually suffer from two
problems: First, it has to solve a large-scale optimization problem with high computational
complexity in dictionary learning. Second, each patch is considered independently in dic-
tionary learning and sparse coding, which ignores the relationship among patches, resulting
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Figure 3.6: Transformations for image completion by Mansfield et al. [37]: For each patch in
the target image T are found matching patches in the source image S under transformations,
e.g. rotation.

(a) (b)

Figure 3.7: Image Melding [17] successfully fills large holes using a richer search space - it
can exploit rotational and reflection symmetry, complete edges and textures using examples
from different orientations, scales and colors. Left: Original image with pink mask that
marks region to be filled. Right: Filled image.

Figure 3.8: Illustration of spatial patch blending algorithm by Daisy et al. [16]. From left to
right: Image with marked area to reconstruct; reconstruction result with the inpainting algo-
rithm from Criminisi et al. [15]; spatial patch blending applied to Criminisi’s reconstruction
result.
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(a) (b) (c)

Figure 3.9: Reconstruction with GSR method [84]: Left: Original image. Middle: The
degraded image with only 20% random samples available. Right: The recovered image by
GSR method.

in inaccurate sparse coding coefficients. Therefore, they proposed to replace the patch as a
basic unit of sparse representation by a group that consists of non-local patches with simi-
lar structures. Moreover, they proposed the dictionary learning for each group with a lower
complexity compared to dictionary learning from natural images. This method achieves
great results if areas that need to be filled are very small. However, in case of larger areas
the results are often too blurry. Moreover, despite various improvements, the method is still
considerably slower than other techniques. To repair one image it needs several minutes.

3.2 Proposed Method for Texture Aware Image Error Con-
cealment

Based on analysis of existing methods for image error concealment we identified main prob-
lems and we proposed a method that addresses these problems. FSE methods [32, 54, 34]
approximate and extrapolate square surroundings of corrupted area while they do not take
into account content of the square area that is usually very diverse. Such approximation of
various textures leads to mixture and in resulting extrapolation it brings undesirable artifacts.
Similarly we often encounter artifacts when using simple patch-based methods [15, 16] that
inpaint the corrupted area by copying patches from uncorrupted surroundings of the missing
area. This observation led us to design one additional step into the process of error con-
cealment. We propose to add a segmentation step which helps to prevent the production of
artifacts.

A step-wise overview of our method is displayed in Fig. 3.10. As the input of the algorithm
we have a corrupted image. In Fig. 3.10 (a) there is a black stripe in the middle of the
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(a) (b)

(c)

(d)

(f)(e)

Figure 3.10: The proposed method: (a) Erroneous input image; (b) Superpixels; (c) Segmen-
tation of areas surrounding corrupted area; (d) Fuzzy segmentation (note the fuzzy borders
of the purple and gray segments); (e) Concealed errors of the segmented areas; (f) Concealed
output image.

image that represents corrupted successive macroblocks. The first step of our algorithm
is over-segmentation of the corrupted image by superpixels (Fig. 3.10 (b)). Superpixels
should have uniform color and texture, similar size, they should be regularly distributed
and their borders should follow significant edges in the image. There are several superpixel
generating methods that we briefly describe in section 3.2.1.1. The important fact is that
the superpixels can be generated in real-time. By merging similar superpixels we get image
segmentation. In Fig. 3.10 (c) there are merged only superpixels adjacent to corrupted area
and all the remaining superpixels are marked by yellow color. We adapted a superpixels
merging algorithm to be able to merge superpixels across corrupted regions. It is described
in section 3.2.1.3.

The main drawback of using the segmentation is a high level of uncertainty regarding the
segment borders in image areas containing unsharp edges or gradients. Therefore, in addition
we propose an extended form of the segmentation which adds soft edges to the segments and
allows them to overlap (see Fig. 3.10 (d)). By introducing fuzzy segment borders, uncertain
decisions are omitted.

The next step of the algorithm is completion of the segmentation in corrupted regions of the
image (Fig. 3.10 (e)). For this task we developed an original algorithm that is based on shape
error concealment techniques for single objects. We describe whole process in section 3.2.2.

The last step of our method for image error concealment is the texture extrapolation. Based
on image segmentation, our method selects only the most relevant uncorrupted pixels for the
extrapolation. By dealing with each segmented region separately, the quality of the results
increases. Fast frequency selective extrapolation methods [54, 34] use a straight forward ap-
proach which extrapolates every pixel falling within the rectangular surroundings of the lost
area. High quality image reconstruction is based on complex patch-based [17] and group-
based methods [84] with run times several orders of magnitude longer. Our algorithm is
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focused on improvement of quality for fast image restoration in the time span of a few sec-
onds.

All steps of our texture aware image error concealment method are described in detail in
following sections of this chapter.

3.2.1 Segmentation with Superpixels

Superpixels are produced by a deliberate over-segmentation of the image with the goal to
create small compact areas which can be used as basic units in the following image pro-
cessing steps. Each superpixel should enclose a homogeneous area in terms of color and
texture. Additionally, the superpixel edge should follow the salience edges in the image. On
the other hand, a regular size and distribution of superpixels is preferable, too. The main aim
of superpixels is to reduce the redundancy in the image and also to increase the calculation
efficiency.

Superpixels have been already used in several application domains: salient object segmen-
tation [30], object tracking [73, 85], salience detection [40], video analysis and segmenta-
tion [20], interactive 3D reconstruction from video [69] etc.

3.2.1.1 Superpixel Producing Methods

A number of methods for producing superpixels has already been proposed. A grouping
algorithm formulated as a graph partitioning problem was proposed by Ren and Malik [49].
It introduced normalized cut criteria for the graph segmentation.

The Constant intensity superpixels method [71] optimizes superpixels in an energy mini-
mization framework using graph cuts. The utilized energy function favors regular superpix-
els.

Felzenszwalb’s efficient graph based segmentation [22] has a single scale parameter influ-
encing the segment size. The actual size and number of segments varies depending on the
local contrast.

The method known as Quickshift image segmentation [23] is based on an approximation of
a kernelized mean-shift. It belongs to the local mode-seeking algorithms, utilizing the LUV
color and location of the pixel.
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One of the most recent algorithms proposed by Benešová and Kottman [11] uses morpholog-
ical reconstruction of input image to remove local extrema. Morphological reconstruction
helps following watershed procedure to not create too small superpixels.

Simple linear iterative clustering (SLIC) [5] is a superpixel generation algorithm based on
the k-means image segmentation in the CIE L∗a∗b∗ space extended by spatial pixel coordi-
nates. In the initialization step, positions of the seeds are sampled on a regular grid. After-
wards, the k-means clustering is calculated for each seed and subsequently the position of
the seed is iteratively updated. Typically, 5-10 iterations are necessary. At last, connectivity
is enforced by stitching small superpixel fragments to neighboring superpixels. For balance
between a regular form of the superpixels and the actual color differences, a compactness
constant as in the case of the Quickshift is included as a weighting factor in the distance
measure.

A fast version of SLIC implemented on the GPU is called gSLIC [48]. The recent Acceler-

ated gSLIC [13] allows interactive rates for images up to the size of 1280×960 pixels.

In this work, we applied SLIC method for a good trade-off between the run-time and the
accuracy. In our algorithm we had to apply few modifications of the original SLIC method
to make it applicable on corrupted images. We describe the method and our modifications in
detail in following sections.

3.2.1.2 Modified SLIC Method for Corrupted Images

SLIC algorithm is based on principle of k-means clustering. Every pixel is associated with
a 5-dimensional vector [L∗a∗b∗ x y] , where L∗a∗b∗ are coordinates in CIE L∗a∗b∗ color
space and x, y are spatial coordinates of a given pixel in the image. L∗a∗b∗ color space
was proposed in a way that color differences measured as Euclidean distance in L∗a∗b∗

space corresponds with color differences given by human perception [29]. Although transfer
from RGB to L∗a∗b∗ color space brings conversion error (due to missing information about
spectral properties of the used camera), this error seem to be irrelevant and by using L∗a∗b∗

color coordinates it is possible to achieve better results compared to using RGB coordinates.

In the initial step of SLIC algorithm for uncorrupted images k leading centers of clusters
Ci = [L∗i a∗i b∗i xi yi] are distributed into a regular grid with spacing of size S =

√
N/k, where

N is a number of image pixels and k is a required number of superpixels.

In our modified algorithm the centers of clusters are distributed always out of the corrupted
area, therefore depending on the size of the corrupted area we initialize smaller number of
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superpixels. Also for this reason, it would be hard to estimate what is the optimal number
of superpixels for the given image and therefore as the input into our algorithm we require
constant S, from which is derived number of superpixels based on following formula S =√

(N−Np)/k, where Np is number of corrupted pixels in the image. Also in following steps
of our algorithm we skip corrupted pixels.

Every initial cluster center is moved within its 3×3 surroundings into such point, where there
is the smallest gradient. This is necessary to avoid centering of the corresponding superpixel
on an edge, and to decrease probability of seeding the superpixel into noisy point.

In a next step we assign each uncorrupted pixel of the image to some cluster. At the beginning
each uncorrupted pixel (excluding cluster centers) has set infinite distance to the nearest
center of a cluster and it is not assigned to any cluster. We go through each cluster center
C parallely and for each pixel p in the area with dimensions 2S× 2S around the cluster
center C we count distance D between the p and C. Definition of distance D can be found
in following section 3.2.1.2.1. If the calculated distance is less than the current value of the
pixel’s distance to the nearest cluster center then this distance is set to a new lower value and
the pixel is assigned to a given cluster.

After passing through each cluster center each uncorrupted pixel p is assigned to such cluster
where the distance D between p and the cluster center is the shortest. If a new point or points
were added into some cluster, it is necessary to calculate a new center. We calculate it as
mean [L∗a∗b∗ x y] vector of all pixels belonging to the cluster. Moreover we have to update
the residual error E, that we count as L2 norm between old and new cluster center. Steps of
assigning and updating can be repeated iteratively until the error will converge. Typically,
5-10 iterations are necessary [5]. In our implementation we do not count residual error we
always make 10 iterations.

At last it is necessary to perform a post-processing step to ensure the compactness of the
resulting superpixels. Details can be found in the section The whole algorithm except for
post-processing step is summarized in the algorithm 3.1.

3.2.1.2.1 Distance Measurement

Color of the point is represented in CIE L∗a∗b∗ color space as a three component vector
[L∗a∗b∗] and its range of possible values is known. Pixel position [x y], on the other hand,
can have a range of values which vary according to the size of the picture.

Defining the distance D between the pixel and the cluster center Ck in the algorithm 3.1 as a
simple Euclidean distance in a 5-dimensional [L∗a∗b∗ x y] space would create inconsistencies
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Algorithm 3.1 SLIC for superpixel segmentation of the corrupted image
/* Initialization */
Initialize cluster centers Ck =

[
L∗k a∗k b∗k xk yk

]
into a regular grid

with the spacing size S outside of the corrupted area.
Move the cluster centers within their
3×3 surrounding to the point with the smallest gradient.
Set label l(i) =−1 for each pixel i.
Set distance d(i) = ∞ for each pixel i.
for j = 0 ... 9

/* Assigning */
foreach cluster center Ck do

foreach pixel i in 2S×2S area around Ck do
Calculate the distance D between Ck and i.
if D < d(i) then

set d(i) = D
set l(i) = k

end if
end foreach

end foreach
/* Updating */
Calculate new cluster centers.

end for
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in clustering procedure for different sizes of superpixels. For large superpixels the spatial
distance would override color similarity, thus, the spatial proximity would have relatively
bigger importance than a color similarity. In this way, we would create compact superpixels,
but they would not follow the edges in the image. For smaller superpixels it would be the
opposite.

In order to combine the two distances (dc as a color distance and ds as a spatial distance) into
a one scale, they need to be normalized based on the maximum color and space distances
within the cluster. We mark maximum color distance as Nc and maximum space distance as
Ns. Then the distance D′ we get by the following derivation

dc =
√

(L∗k−L∗i )2 +(a∗k−a∗i )2 +(b∗k−b∗i )2 (3.1)

ds =
√
(xk− xi)2 +(yk− yi)2 (3.2)

D′ =

√(
dc

Nc

)2

+

(
ds

Ns

)2

(3.3)

Authors of the SLIC method approximates the maximum spatial distance within a given
cluster as the size of the grid spacing from the initialization, thus, they define Ns = S. Deter-
mination of the maximum color distance Nc is not that easy because the color distances may
vary significantly from one cluster to another and from one image to another. The authors
of the SLIC method nevertheless decided to define Nc value using a constant m, that on the
basis of experiments they determined to the value of the 10. Therefore the equation of the
resulting distance D is

D =

√(
dc

m

)2

+

(
ds

S

)2

(3.4)

In our experiments, we came to the conclusion that the proposed approximation of the maxi-
mum space and color distances within a cluster is too inaccurate. So we decided to calculate
the maximum span of all five components of the vector [L∗a∗b∗ x y] exactly and therefore we
work with a modified formula of the distance D

D =

√√√√(L∗k−L∗i
Nk

L

)2

+

(
a∗k−a∗i

Nk
a

)2

+

(
b∗k−b∗i

Nk
b

)2

+

(
xk− xi

Nk
x

)2

+

(
yk− yi

Nk
y

)2

(3.5)
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Algorithm 3.2 Supplemented part of the Assigning from the algorithm 3.1 by
the calculation of new values Nk

L, Nk
a , Nk

b , Nk
x ,Nk

y

/* Assigning */
foreach cluster center Ck do

foreach pixel i in 2S×2S area around Ck do
Calculate the distance D between Ck and i.
if D < d(i) then

set d(i) = D
set l(i) = k
calculate new values Nk

L, Nk
a , Nk

b , Nk
x ,Nk

y

end if
end foreach

end foreach

In the algorithm 3.1 it means only a minor change. After some pixel is assigned to the
cluster k, we calculate the new values of the maximum range of the individual [L∗a∗b∗ x y]

components of the vector for a given cluster k. A supplemented part of the assigning can be
seen in the algorithm 3.2.

3.2.1.2.2 Ensuring Superpixel Compactness

The result of the SLIC algorithm is that each uncorrupted pixel in the image has been as-
signed to the one of the clusters. But as yet we have no information about the compactness
of the clusters. In order to obtain this information, we go through all pixels by the Flood Fill
algorithm. We begin in the upper left pixel and with Flood Fill we fill all the surrounding
pixels that are assigned to the same cluster as the first pixel. Pixels passed by Flood Fill
create a first superpixel. The superpixel carries information about coordinates of all pixels
belonging into it and what is their average L∗a∗b∗ value. We store the superpixel in the
associative array with the key equal to the cluster index.

We pass through each uncorrupted pixel, that is not yet assigned to any superpixel, by the
Flood Fill algorithm, i.e. we fill all the surrounding pixels that are assigned to the same
cluster and we create a new superpixel for these pixels. Again we store created superpixel
in the associative array with the key equal to the cluster index. After passing through all the
uncorrupted pixels we have in the associative array for each key stored at least one superpixel.
Each key, which has allocated more than one superpixel, does not have a compact cluster.
The cluster is formed by several superpixels. Our goal is that each cluster is compact (see
Fig. 3.11).
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(a) The input image - hat of Lenna

(b) Non-compact clusters

(c) Compact clusters = resulting superpixels

Figure 3.11: Comparison of compact and non-compact clusters.
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Algorithm 3.3 The process of assigning parts of the non-compact clusters to the most similar
neighbors

Sort the array S of superpixels that should be assigned to another clus-
ter from the smallest (with the least number of pixels).
foreach superpixel s from array S do

Assign superpixel s to its the most similar neighboring superpixel t.
Update the list of pixels belonging to super-
pixel t (add to the list all pixels of s).
Recalculate the average L∗a∗b∗ value of t.
Update the list of neighbors of t and sort it from the most simi-
lar neighbor.
Ask neighboring superpixels to update their lists of neighbors.

end foreach

For each non-compact cluster we sort all its superpixels starting with the largest (with the
biggest number of pixels) to the smallest. We leave the largest superpixel in a given cluster,
and we will assign each smaller superpixel to another cluster adjacent to it. Such smaller
superpixels from all clusters we collect into one array and we sort them starting with the
smallest. The smallest superpixels we assign to the neighboring clusters first. Our goal is to
assign a superpixel to a neighbor with a most similar color. We determine a similarity of the
two superpixels according to the formula

DLab =
√

(L∗2−L∗1)
2 +(a∗2−a∗1)

2 +(b∗2−b∗1)
2 (3.6)

where L∗1a∗1b∗1 are the average L∗a∗b∗ values of one superpixel and L∗2a∗2b∗2 are average values
of the second superpixel. The smaller the DLab value the more similar the two superpixels
are.

Since we want to assign superpixels from non-compact clusters to their neighbors with the
most similar color, in the data structure of each superpixel, we will also keep a list of its
neighbors sorted from the most similar. Then the process of assignment of a superpixel s

to the most similar neighbor t consists of several steps. To the list of pixels of t we add all
pixels of s. Then we recalculate the average L∗a∗b∗ value of t. And we update the list of
neighbors of t - we add into the list all neighbors of s, except t, and we delete s from the list,
because it actually already does not exist. Finally, we ask neighboring superpixels to also
update the list of their neighbors. The process of assigning of the non-compact parts of the
clusters to the most similar neighbor is clearly described in the algorithm 3.3. The result of
the algorithm is a low level image segmentation with superpixels (see Fig. 3.11c).
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(a) (b) (c)

Figure 3.12: The process of segmentation: (a) Corrupted input image; (b) Low level image
segmentation with superpixels; (c) High-level image segmentation.

3.2.1.3 Merging Superpixels in Corrupted Images

To achieve a high-level image segmentation, similar superpixels must be merged (see Fig.
3.12). We adapted the merging algorithm proposed by Birkus [13] to merge across the lost
areas. Algorithm proposed by Birkus is designed so that each superpixel is compared with
each its neighbor to decide whether to merge them into a single segment. The basic idea of
our algorithm is that two superpixels are considered neighbors even when they are separated
by the lost area.

When we implemented the rule, that superpixels are considered neighbors even when they
are separated by the lost area, we encountered an issue. Sometimes happen that two super-
pixels, that were very distant from each other (each lay on the other side of the lost area),
were merged into one segment. Therefore, we had to add a condition that the distance of two
superpixels which will be considered as neighbors, must not exceed a certain length. This
length have been determined as 1,5-times the size of the longest side from the shorter sides
of bounding boxes of all lost areas in the image.

At the beginning of the merging process of superpixels we create as many segments, as
there are superpixels. To each segment, we assign one superpixel as the first component
of connectivity. Segment data structure carries the same information as the data structure
of superpixel - there is information about which pixels belong to the segment, what is the
average L∗a∗b∗ value and the list of adjacent segments. In this case, we add into the list of
neighbors also neighbors over the lost area.
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We pass through all segments parallely to find out whether we can associate to the segment
some of its neighbors. Whether the segment t should be assigned to the segment s, depends
on their similarity. The most convenient way to determine the similarity of two segments is
to compare their mean L∗a∗b∗ values, i.e. to compare their colors. But it is also possible to
compare texture structure of the segments. More about comparing segments based on their
textures is in the next Chapter 4. Here for the simplicity we compare only segments color.

The color similarity of two segments can be determined using the formula 3.6. If the value
DLab is less than a threshold given by the user, then the segment t will be assigned to the
segment s. It means, that the entire list of components of t will be added to the list of com-
ponents of s. Next, we add all the pixels of t to the list of pixels of s and also we recalculate
the average L∗a∗b∗ value of s. In addition, we update the list of neighbors of s - we add into
its list all neighbors of t, except s, and we delete t from the list, because it actually already
does not exist. Finally, we ask neighboring segments, that they also update the list of their
neighbors. Cycle of going through all the segments is repeated, until there are found at least
two segments to be merged, thus, they are more similar as the specified minimum similar-
ity. After this cycle of merging segments we have to merge adjacent components belonging
to the same segment. This is necessary because we want that the resulting components are
components of the connectivity of the given segment.

After we finish the process of merging segments, we have created high-level segmentation,
but it is only the segmentation of corrupted image (see Fig. 3.12 (c)). Therefore we will
have to complete the segmentation in the lost areas (see section 3.2.2). Based on the full
segmentation, we will already know, which textures adjacent to the lost area we should
extrapolate to which part of the lost area. The process of texture extrapolation is described
in section 3.2.4.

3.2.1.4 Fuzzy Segmentation in Corrupted Images

Some parts of the image in Fig. 3.10(a) can not be segmented properly because of soft edges
or gradients. Therefore, in addition to our original method [68] we create a segmentation
with overlaps (see Fig. 3.10(d)). There is no longer a bijective mapping between the pix-
els and segments. The assignment is determined by certainty values, thus the term fuzzy

segmentation.

Each segment disrupted by the lost area gets extended by similar pixels from its neighboring
segments. We determine a similarity of a pixel and a segment according to the formula

DLab =
√

(L∗2−L∗1)
2 +(a∗2−a∗1)

2 +(b∗2−b∗1)
2 (3.7)
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where L∗1a∗1b∗1 are the average L∗a∗b∗ values of the segment and L∗2a∗2b∗2 are values of the
pixel. The smaller the DLab value the more similar are. Similarity threshold is given by the
user.

The added pixels are required to be 4-connected to the original or to the extended segment
area. The certainty is represented in the range of 0.0 to 1.0 which is basically a normalized
distance to the original segment border. The certainty of original pixels of the segment is set
to 1.0. The further away, the less certain an added pixel is. Actually, the certainty values
need to be computed only for the repaired segments within the corrupted regions. Details are
provided in section 3.2.3.

3.2.2 Shape Error Concealment for Segmented Images

One of our key contributions is the extension of shape error concealment techniques for
single objects to segmented images with each corrupted segment being a small object to
conceal. Connectivity of neighboring segments and of segment pieces cut by the lost area
into several pieces is the main challenge.

In Fig. 3.10(c), areas with the same color belong to the same segment. Each segment can
be composed of: one (e.g. the purple segment), or more (e.g. the light blue segment) com-
ponents of connectivity. The black stripe in the middle marks the lost area. Our goal is to
conceal it by connecting equally colored areas, in other words to join components of each
segment (see example output image in Fig. 3.10(e)).

In general, it is more likely that a contour of a segment will have a rather curved shape.
Therefore, our approach for reconstruction of the missing contours is based on the related
work for binary images known as shape error concealment which cover the topic of curved
shapes reconstruction quite well. Various techniques [53, 59, 65] were proposed for object-
based video where the scenes are understood as a composition of objects [28]. Missing
parts of video objects boundaries can be smoothly completed using approximate curves like
Hermite splines [53] or Bézier curves [59] or B-spline curves [65].

Our original shape error concealment method [68] is an extension of the approach by Tsili-
gianni et al. [65]. We adjusted some steps where additional information from a colored input
image can be utilized to speed up the algorithm and to improve the results. Each step of
our shape error concealment method [68] is explained in detail in following subsections of
this section. In this section we deal with basic segmentation and we do not address fuzzy
segmentation. Details about completion of fuzzy segmentation can be found in following
section 3.2.3.
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A1+ B1+ C1+ D1+ E1+ F1+ G1+

A1- A2- B1- C1- D1- E1- F1-H1- G1-

S
T

Figure 3.13: Labels and indices of corrupted segments obtained by tracing the lost area
border. The segment A consists of two connectivity components, the lower one has two
border parts.

3.2.2.1 Indexing Corrupted Segment Components

In the first step we identify segments disrupted by the lost area and mark them along the lost
area border. We select two points (S,T ) of the lost area – the top-left most and the bottom-
right most. Then, we trace the contour of the corrupted area clockwise starting from S up
to T and check pixels in a 4-connected neighborhood for multiple components or parts of
the same segment. When encountering a segment for the first time we mark it by the index
1+. When reaching the segment for the next time we increase the index to 2+, etc. Thus,
each part of a segment border in Fig. 3.13 is marked by a number consisting of the segment
label and index number. To cover the whole lost area border, the same procedure is applied
counter-clockwise while assigning negative indices.

3.2.2.2 Concealment of Simple Segments

Segments indexed only by positive or only by negative indices are denoted as simple. In
order to be concealed no pairing of components is necessary for them. In Fig. 3.13 the purple
segment H is the only simple segment. To repair its corrupted part we have to estimate its
shape within the lost area.

The simplest way to connect the contour endpoints is to use a straight line segment. It would
result in a simple G0 geometric continuity of the contour. In most of the cases, better results
can be achieved by targeting a higher degree of continuity. Existing methods [53, 59, 65]
produce results with C1 continuity by performing the following steps:

1. Approximate the known contour in the surrounding of the endpoints by a pair of
curves, one for each endpoint.

2. Find tangent vectors of the curves in both endpoints.
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S S S

Figure 3.14: Tangents of the known segment contour (left) determine the concealment curve
(middle) to enclose the lost pixels of the segment (right).

3. Use the tangent vectors to construct a concealment curve in the corrupted region such
that it smoothly joins the endpoint curves from step 1.

We decided to use the same algorithm for all three steps as it was proposed in [65]. A
B-spline curve is constructed to obtain a missing contour, based on a T-spline [10] repre-
sentation of the extracted contour. T-splines produce shape preserving approximations and
do not change the characteristics of the original contour. This representation ensures a good
estimation of the tangent vectors at the endpoints. The reader is referred to [65] for more de-
tails. After the concealment curve is constructed we assign the enclosed area to the segment
(see Fig. 3.14). The same procedure is applied to all simple segments.

3.2.2.3 Concealment of Paired Segments

Once all simple segments are repaired, we can start to process segments consisting of several
components. The situation is more difficult, since segment components from different sides
of the lost area need to be connected. For each broken part we find the closest one from the
opposite side and connect their endpoints using the same algorithm as for simple segments.
The endpoints are connected so that the concealment curves do not cross.

Segments B . . .G in Fig. 3.13 all consist of two border components, thus the pairing is straight
forward. Segment A consists of A1+, A1− and A2− which yield the ordered pairs

(
A1+,A1−

)
,
(
A1−,A1+

)
,
(
A2−,A1+

)
.

After transforming them into unordered pairs, there remain

(
A1+,A1−

)
,
(
A1+,A2−

)
.
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TANGENTS CURVES ASSIGNEMENT

REPAIRED SEGMENT

Figure 3.15: Shape error concealment of a the segment A from Fig. 3.13 connects each of its
border components to the closes opposite one. In the top row A1+and A1−are paired, in the
bottom row A1+and A2− are paired. The final segment shape is given as the union of both
partial results.

Shape error concealment for both pairs is demonstrated in Fig. 3.15. Overlapping of the
respective areas is not an issue since the pixels will be all assigned to the same segment.

3.2.2.4 Concealment of Remaining Errors

The previous steps do not guarantee to conceal all errors. If there are simple corrupted
segments on opposite sides of the lost area, some pixels between them might stay unassigned
(see Fig. 3.16). In the last step of the concealment procedure, such pixels are iteratively
repaired by a special mode filter. If at least the half of pixel’s 9×9 neighborhood is already
resolved, then the pixel gets assigned to the most common segment from its neighborhood.

Segments produced by pairing are located on opposite sides of the lost area. Therefore, we
consider the shape of their connection to be optimal. On the other hand, the missing shape
is repaired with much less confidence for simple segments. In order to improve the con-
cealment results of the mode filter, a pixel is always assigned to a simple segment from its
neighborhood, if any exists. After processing all segments we obtain the estimated segmen-
tation of the lost area.

3.2.3 Completing the Fuzzy Segmentation

In a classic segmentation, for each segment we find tangents of its shape at the border of the
corrupted region and construct B-spline curves to complete the corrupted segment shape (see
Fig. 3.17(a)). After the concealment curves are constructed, we assign the enclosed area to
the segment. A similar procedure is applied to the fuzzy part of the segment (Fig. 3.17(b)).
We find its border, then its tangents in the endpoints of the fuzzy border and afterwards repair
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(a) (b) (c)

Figure 3.16: Concealment of remaining errors: (a) Input segmentation out of the corrupted
area; (b) Concealed simple and paired segments; (c) Concealed remaining errors.

(a) (b) (c) (d)

Figure 3.17: Repairing a fuzzy segmentation in corrupted image: (a) Tangents and con-
cealment curves of the original gray segment; (b) Tangents and concealment curve of the
extended grey segment; (c) All concealment curves of the grey and brown segments; (d) The
complete fuzzy segmentation.
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A B

(a)

A B

(b)

E FA B

(c)

E FA B

P’

P

(d)

E FA B

P’

P

(e)

Figure 3.18: Tangents of the known segment contour determine the concealment curve (a) to
enclose the lost pixels of the segment (b). Tangents of the known extended segment contour
(c) are not sufficient to determine a proper concealment curve for the fuzzy border. The point
P′ and its tangent have to be added to enhance the concealment curve (d) and the final fuzzy
shape error concealment (e).

the extended border by a B-spline curve. Again we assign the enclosed area to the segment
but in this case we additionally compute the certainty values of the assigned pixels. The
certainty cp of the pixel p is given as

cp =
dextended

dextended +doriginal
(3.8)

where dextended is the Euclidean distance of the pixel p to the nearest pixel in the extended
segment border and doriginal is the Euclidean distance of the pixel p to the nearest pixel in
the original segment border. We apply the same procedure to all segments to complete the
fuzzy segmentation of the image (see Fig. 3.17(d)).

3.2.3.1 Concealment of Simple Segments

In Fig. 3.10(c) the purple segment is the only simple segment. To repair its corrupted part
we estimate its shape within the lost area by finding tangents in the endpoints determining
the concealment curve and assign the enclosed area to the segment (see Fig. 3.18(a,b)). If we
would apply the same procedure also to the extended part of the segment the concealment
curve could cross the concealed segment shape as it is illustrated in Fig. 3.18(c). Therefore,
we propose to find and use one more point with its tangent as the input for the concealment
curve. We find such point P from the concealed part of the segment that has the biggest
distance from the line segment EF connecting the endpoints of the extended segment contour
(see Fig. 3.18(d)). Then we find the normal vector n of the line segment EF that points into
the lost area and we normalize it. Afterwards we move the point P in the direction of the
normalized normal vector n for the mean length of AE and FB line segments to get the point
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P′. The tangent in point P′ is parallel to the tangent of the line segment EF . We use the point
P′ with its tangent as the additional input for the concealment curve.

3.2.3.2 Concealment of remaining errors

In our original shape error concealment method [68] we proposed to use a special mode filter
to conceal remaining errors. With fuzzy segmentation it is no more necessary. If a pixel
gets assigned to at least one extended part of a segment, we consider such pixel corrected.
But still, there might remain some small areas with uncorrected pixels. For each such area
we find all neighboring segments. Then we assign each pixel from the uncorrected area to
the extended part of all neighboring segments. The certainty cp(S) of the pixel p in the
neighboring segment S is given as

cp(S) = d−1
S , (3.9)

where dS is the Euclidean distance of the pixel p to the nearest pixel from the neighboring
segment S.

3.2.4 Texture Extrapolation

Based on the completed segmentation we already have information where we should extrap-
olate which part of the image texture and thus we can conceal the errors in the image. Wang
et al. [74] developed a method for approximation of non-square areas. The texture of an
area is successively approximated and then cut to the shape of the segment. Our proposed
algorithm implements this principle for completion of texture in corrupted segments. We
estimate a missing texture of a segment by extrapolating texture from the uncorrupted com-
ponents of the given segment. Our goal is to extrapolate the texture so that it preserve its
structure and to smoothly join extrapolated and uncorrupted parts.

3.2.4.1 Selection of Suitable Basis Function

Let A be an extended segment representing an arbitrary shaped region of a 2D discrete image.
The uncorrupted part of the segment has an internal texture structure denoted as f (n1,n2).
First, the circumscribing rectangle L is found for A. Then, L is padded with zeros so that
its width and height is a power of 2 to allow the use of fast transform algorithms. The size
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of the rectangle L is now N1×N2 . The texture structure of A within the rectangle L is then
approximated using appropriate basis functions.

We use a set of orthogonal functions uk1,k2 (n1,n2) where k1,n1 ∈ {0,1, . . . ,N1−1}, k2,n2 ∈
{0,1, . . . ,N2−1}. The texture approximation for L after v steps is denoted as g(v) (n1,n2).
Using linear approximation, it can be expressed as a sum of basis functions weighted by
appropriate spectral coefficients

g(v) (n1,n2) = ∑
k1,k2∈Kv

c(v)k1,k2
uk1,k2 (n1,n2) ,

where Kv denotes the set of basis function indices used in g(v) (n!,n2) and c(v)k1,k2
denotes the

spectral coefficients. The residing difference between the original texture and its approxima-
tion is then

r(v) (n1,n2) = f (n1,n2)−g(v) (n1,n2) .

Now we can approximate this difference by a suitable basis function to minimize the follow-
ing error function

EA = ∑
(n1,n2)∈Auncorrupted

[ f (n1,n2)−g(n1,n2)]
2 ,

where Auncorrupted represents the pixels of the uncorrupted part of the segment. According to
Polec et al. [42] the solution is given by maximizing

∆E(v)
Auncorrupted

=

[
∑(n1,n2)∈Auncorrupted

r(v) (n1,n2)uk1,k2 (n1,n2)
]2

∑(n1,n2)∈Auncorrupted

[
u2

k1,k2
(n1,n2)

] .

More details are provided in [42]. Figure 3.19 demonstrates application to a single segment
using Discrete cosine transform (DCT) as described in work of Kaup [31].

3.2.4.2 Texture Extrapolation into Corrupted Part of the Segment

We iterate the texture approximation of correctly received parts of the segment until we reach
sufficient quality. There are several methods for video and image quality measurement. In
section 3.2.5.1 we describe four of them (Mean Squared Error (MSE), Peak Signal-to-Noise
Ratio (PSNR), DCT-based video quality metric (VQM) and Structural Similarity (SSIM)
index) because we use them to measure the quality of results of our and other error con-
cealment methods. Here to determine the quality of the approximation we use the PSNR
measure and its required value is specified by the user. After the uncorrupted part of the
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(a) (b)

Figure 3.19: The texture of an arbitrarily shaped segment is successively approximated and
then cut to the shape of the segment: Circumscribing blue rectangle L of the corrupted tex-
tured segment A (a); Texture extrapolation of the segment A into its corrupted part using
successive Discrete cosine transform (S-DCT) (b).

segment has been approximated with sufficient quality, the corrupted part is extrapolated as
the appropriate part of the rectangle circumscribing the whole segment.

For color images, the approximation and extrapolation is performed separately for all chan-
nels of the YCbCr color space. Firstly we tried to apply the transformation to RGB color
channels, but the results were not satisfactory, so we tried to use YCbCr color space and the
achieved results were much better. Thus before the texture approximation we convert the
image into YCbCr color space:

 Y
Cb
Cr

=

 0
128
128

+
 0.299 0.587 0.114
−0.169 −0.331 0.500
0.500 −0.419 −0.081

 ·
 R

G
B

 (3.10)

The extrapolated textures we convert back to RGB color space:

 R
G
B

=

 1.000 0.000 1.400
1.000 −0.343 −0.711
1.000 1.765 0.000

 ·
 Y

Cb−128
Cr−128

 (3.11)

If all the direct superpixel neighbors would be used for texture restoration, any of them could
distort the repair. Our method controls the quality by restricting the extrapolation to derive
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MSE: 10.29
(a)

MSE: 0.65
(b)

Figure 3.20: Successive Discrete cosine transform (S-DCT) extrapolation from all surround-
ing superpixels (a) compared to a selection based on superpixels merging (b). MSE signifi-
cantly dropped after removing the left-most superpixel.

from homogeneous regions only. Moreover, the processing of homogeneous and smaller
regions requires less time to reach the required PSNR.

In Fig. 3.20 the red superpixel gets repaired by extrapolation from the superpixels marked
blue. On the left, the left-most superpixel matching the dark wing mixed its texture into
the blurred background during the extrapolation. On the right, removal of the problematic
superpixel leads to an almost perfect reconstruction.

A precise segmentation of textures is very important, but not always possible. Discrete
segmentation fails for example for unsharp edges where it introduces errors at the segment
borders which propagate further during the restoration (see Fig. 3.21 (b, d)). Therefore we
proposed to use the fuzzy segmentation that helps to correctly restore gradients and unsharp
edges (see Fig. 3.21 (c, e)). Neighboring segments often overlap in the fuzzy segmentation
approach. The final color for pixels that are covered by more than one segment is computed
as a normalized sum of the extrapolated data weighted by the respective certainty values (see
section 3.2.3).

3.2.5 Method Evaluation

To assess the quality of our error concealment method we tested it on various images with
different localized errors and we compared our results with results of the three state of the
art image inpainting methods: simple patch-based method [16] and the sophisticated patch
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(a) Original gradient image with marked corrupted
area

(b) Simple segmentation with highlighted repaired
area

(c) Fuzzy segmentation with highlighted repaired
area

(d) Result of our original method [68] using the simple
segmentation from (b)

(e) Result of the proposed method using the fuzzy seg-
mentation from (c)

Figure 3.21: Results comparison of our error concealment method with and without fuzzy
segmentation in gradient image. Our original method with simple segmentation (b, d) re-
sulted into many artifacts. The result of the proposed method with fuzzy segmentation (c, e)
has very good visual quality.
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and group-based methods [17, 84]. For the objective evaluation of the quality of the achieved
results we used four widely used quality measurement methods that we describe in following
section. In section 3.2.5.2 we provide results of our experiments.

3.2.5.1 Video and Image Quality Measurement

It is necessary to compare the various concealment methods by some objective criteria. We
have to determine the quality of the images obtained by concealment with different tech-
niques of the same corrupted video / image to decide which one is closer to the original.
Measuring of the visual quality is a difficult and often imprecise art because there are many
factors that can affect the results. Visual quality is strongly subjective because it is influenced
by many subjective factors. Viewer’s rating of visual quality depends very much on the spe-
cific task, such as passively watching a movie, actively participating in a video conference or
trying to identify a person in a surveillance video scene. Measuring the visual quality using
objective criteria gives accurate, repeatable results. But there are not objective measurement
systems that would completely reproduce the subjective experience of a human observer.

Many objective measurement methods have been developed that can more or less reflect the
impact of concealed images and videos on the human visual system (HVS). Some of these
methods can be fully described by a computable analytical model, which makes them very
easy to use.

Let us define an image as

I(x, y) = (R, G, B), (3.12)

where x, y are spatial coordinates ranging from 0 to image width w− 1 and image height
h− 1, respectively and R, G and B are components of RGB color space ranging from 0 to
255 for 24-bit color images. The function I(x, y) assigned to each image pixel some RGB
color. Quality measurements are usually applied only to luminance component of the color
space and they are evaluated for whole image and not just for the concealed corrupted parts
of the image. We used the following conversion from RGB color space to Y component of
YUV color space:

Y = 0.2989×R+0.5870×G+0.1140×B (3.13)

Then the Mean Squared Error (MSE) is defined as
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MSE =
1

w×h

w−1

∑
i=0

h−1

∑
j=0

(Yoriginal(i, j)−Yconcealed(i, j))2, (3.14)

where Yoriginal(i, j) is the luminance value in YUV color space for pixel (i, j) in original
uncorrupted image and Yconcealed(i, j) is the luminance value in YUV color space for pixel
(i, j) in concealed corrupted image. MSE metric is one of the standardized video and image
error measurements and due to its simplicity it is widely used in practice.

Peak Signal to Noise Ratio (PSNR) is measured on a logarithmic scale and depends on the
mean squared error between the original and concealed corrupted image (or video frame),
relative to the square of the highest possible signal value in the image, that is given as (2n−
1)2, where n is the number of bits per image sample (in our case n = 8, because we converted
the 24-bit color image to the 8-bit grayscale image):

PSNR = 10 log10
(2n−1)2

MSE
(3.15)

Typical values for the PSNR in lossy image and video compression are between 30 and
50 dB, provided the bit depth is 8 bits, where higher is better [9]. Acceptable values for
wireless transmission quality loss are considered to be about 20 to 25 dB [36]. Since PSNR
and MSE are based on a comparison of individual pixels, they have a limited relationship
with distortion or perception of the quality by the human visual system [78].

Xiao [80] proposed a modified DCT-based video quality metric (VQM) based on Wat-
son’s DVQ model [76], which exploits a property of visual perception. Human sensitivity to
spatio-temporal pattern decreases with high spatial and temporal frequency [80]. Therefore,
we can represent high spatial and temporal information with less precision while human’s
eyes are not sensitive to the loss of this information. And DCT quantization exploits this
property directly.

In Fig. 3.22 there is displayed a block diagram of VQM. It starts with image / video frame
transform to YUV color space. After that the DCT transform is applied. Third step is the
conversion of each DCT coefficient to local contrast (LC) using following equation:

LC(i, j) = DCT(i, j)
0.65
√

DC/1024
DC

, (3.16)

where DC is the DC component of each block. For 8-bit image, 1024 is mean DCT value.
0.65 is the best parameter for fitting psychophysics data [80]. After this step, most values
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Figure 3.22: Block diagram of VQM [80]

lie between −1 and 1. The first three steps are identical to Watson’s DVQ model [76]. The
next step is different from Watson’s model. Instead of applying temporal filtering and human
spatial contrast sensitivity function (SCSF) separately, Xiao chose to apply one SCSF matrix
for static frames and one matrix for dynamic frames in one step to reduce the computation
and memory load. The DCT coefficients are converted to just-noticeable differences by
multiplying each DCT coefficient by its corresponding entry in the SCSF matrix.

In the last step called weighted pooling the two sequences are subtracted first. At this step
VQM also differs from DVQ by incorporating contrast masking into a simple maximum
operation and then weights it with the pooling mean distortion. This reflects the facts that
a large distortion in one region will suppress human sensitivity to other small distortion, for
this kind of situation, weighted maximum distortion into pooled distortion is much better
than pooled distortion alone.

VQM = (Meandist +0.005×Maxdist), (3.17)

where

Meandist = 1000×mean(mean(abs(di f f ))) (3.18)

and

Maxdist = 1000×maximum(maximum(abs(di f f ))) (3.19)

Maximum distortion weight parameter 0.005 is chosen based on several primitive psychophysics
experiments. Parameter 1000 is the standardization ratio.
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Figure 3.23: Diagram of the structural similarity (SSIM) measurement system [75].

Xiao based on his experiments determined the threshold for detecting a distortion to 1 unit.
Thus VQM lower than 1 means not noticeable distortion. Starting from 1 and going higher
the distortions are noticeable and higher number means bigger distortion. VQM was stan-
dardized in 2003 by the organization ANSI [4] and in 2004 by the organization ITU-T [1, 2].

Structural Similarity (SSIM) index evaluates the visual impact of shifts in the luminance
of the image, changes of the contrast and other defects known as the structure changes.
SSIM quality measurement method is based on the premise that the human visual system is
highly adapted for extracting structural information of the scene. Measurement of structural
distortions should provide a better correlation with subjective perceptions [19, 82].

The SSIM quality assessment index is based on the computation of three terms, namely the
luminance term, the contrast term and the structural term (see Fig. 3.23). The overall index
is a multiplicative combination of the three terms [75]:

SSIM(x, y) = [l(x, y)]α × [c(x, y)]β × [s(x, y)]γ , (3.20)

where

l(x, y) =
2µxµy +C1

µ2
x +µ2

y +C1
, (3.21)

c(x, y) =
2σxσy +C2

σ2
x +σ2

y +C2
, (3.22)
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s(x, y) =
σxy +C3

σxσy +C3
, (3.23)

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and cross-covariance
for images x, y.

If α = β = γ = 1 (the default for Exponents), and C3 = C2/2 (default selection of C3) the
index simplifies to:

SSIM(x, y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
(3.24)

SSIM has several properties:

• symmetry: SSIM(x, y) = SSIM(y, x)

• boundedness: SSIM(x, y)≤ 1

• unique maximum: SSIM(x, y) = 1 ⇐⇒ x = y

SSIM provides greater consistency with HVS as PSNR, even that it fails in assessing the
quality of images that are too blurred [72]. SSIM index belongs to the frequently used
methods for the objective evaluating of the video and image quality.

3.2.5.2 Experimental Results

The main goal of our research is to propose an efficient method for fast texture aware er-
ror concealment of color images and video frames. Experiments indicate that the presented
method exceeds the quality of comparably fast frequency selective extrapolation methods
[54, 34], simple patch-based methods [15, 16] and our original method with simple segmen-
tation [68]. At the same time it outperforms the sophisticated patch and group-based methods
[17, 84] in time needed to achieve results of a comparable quality. Experiments were con-
ducted on images degraded with artificially generated localized errors using an Intel Xeon
X5550. Tables 3.1 and 3.2 provide a comparison of objective error measurements (measured
by MSU Video Quality Measurement Tool [3]) and timings for all presented results. Us-
ing the standard error measurements techniques implies a comparison to the ground truth.
However, we believe that concealment should be also judged by the subjective impression of
the image consistency regardless of the original picture. The measured timings exclude the
image over-segmentation step which can be implemented in real-time on the GPU [13].
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Table 3.1: Error measurements and timings for the fast methods in Fig. 3.24, 3.25, 3.26 and
3.27.

Concealment Quality Measures (whole image) Time
Method MSE PSNR VQM SSIM [min]

Cardinal

Without segmentation 30.11 33.34 1.15 0.9320 1:41

GIMP 10.89 37.76 1.04 0.9768 0:01

Simple Segmentation 11.47 37.54 0.75 0.9738 0:04
Fuzzy segmentation 10.57 37.89 0.73 0.9780 0:09

Lenna

Without segmentation 79.73 29.11 2.88 0.9265 2:43

GIMP 103.20 27.99 3.49 0.9415 0:02

Simple Segmentation 31.08 33.21 1.94 0.9586 0:05
Fuzzy segmentation 26.40 33.91 1.55 0.9633 0:16

Swan
GIMP 159.73 26.10 5.32 0.9630 0:01

Simple Segmentation 9.76 38.24 0.84 0.9858 00:18
Fuzzy segmentation 9.80 38.22 1.09 0.9840 00:30

Raft
GIMP 51.54 31.01 3.00 0.9678 0:02

Simple segmentation 37.13 32.43 2.24 0.9698 0:28

1
In our experiments we used successive Discrete cosine transform (S-DCT) and successive
separable 2D Hartley Transform with sequentially ordered basis functions [41]. Hartley
transform in 2D corresponds to its separable 1D realization for rows and subsequently for
columns. We will refer to it as cas-cas [47] and abbreviate it as DCCT. The acronym S-
DCCT corresponds to successive (iterative) approximation using the DCCT basis functions
in the sequential order.

3.2.5.2.1 Comparison with Fast Methods

Frequency selective methods extrapolate every pixel falling within the rectangular surround-
ings of the lost area. Consequently, any object within the source window contributes to
the frequency-based approximation. Unrelated features are often mixed between different
regions. If the source pixels for the reconstruction are limited to the same segment and
its shape is concealed beforehand, the tone and texture of the repaired area keeps similar
attributes. Fig. 3.24(b) shows S-DCT-based and Fig. 3.25(b) S-DHYT-based error conceal-
ment compared to the results of our method with segmentation (f). Segmentation minimized
the texture extrapolation artifacts.

On the last four images in Fig. 3.24, 3.25 and 3.26 we compare results of our method with
simple segmentation and fuzzy segmentation. Fuzzy segmentation outperforms simple seg-
mentation in error concealment of images with gradients and soft edges. The most significant

60



3.2. PROPOSED METHOD FOR TEXTURE AWARE IMAGE ERROR
CONCEALMENT

(a) Original image of bird cardinal with marked cor-
rupted area

(b) Direct S-DCT extrapolation from whole surround-
ing of the corrupted area

(c) The result of method proposed in [16] implemented
in graphic software GIMP [25]

(d) Simple segmentation with highlighted repaired area(e) Fuzzy segmentation with highlighted repaired area

(f) Result of our original method [68] using the simple
segmentation from (d) and S-DCT

(g) Result of proposed method using the fuzzy segmen-
tation from (e) and S-DCT

Figure 3.24: Results comparison of fast methods for the image of the cardinal bird. S-DCT
extrapolation from whole surroundings of the corrupted area (b) mixed textures together.
Method implemented in GIMP (c) did not connect the left bird wing very well. Our orig-
inal method with simple segmentation (d, f) connected wings of the bird better, but it was
not able to maintain soft edges in the right part of the image. The proposed method with
fuzzy segmentation (e, g) significantly improved the main drawback of the original method.
Table 3.1 provides a comparison of objective error measurements and timings for all results.
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(a) Original image of Lenna with marked corrupted
area

(b) Direct S-DHYT extrapolation from whole sur-
rounding of the corrupted area

(c) The result of method proposed in [16] implemented
in graphic software GIMP [25]

(d) Simple segmentation with highlighted repaired area (e) Fuzzy segmentation with highlighted repaired area

(f) Result of our original method [68] using the simple
segmentation from (d) and S-DHYT

(g) Result of proposed method using the fuzzy seg-
mentation from (e) and S-DHYT

Figure 3.25: Results comparison for the image of Lenna. S-DHYT extrapolation from whole
surroundings of the corrupted area (b) mixed textures together. GIMP method (b) copied
many artifacts into the face of Lenna. Our original method with simple segmentation (d, f)
was not able to maintain soft edges and gradients and it resulted into many artifacts. The pro-
posed method with fuzzy segmentation (e, g) radically reduced the artifacts and it achieved
almost perfect result. Table 3.1 provides a comparison of objective error measurements and
timings for all results.
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(a) Original image of swan with marked corrupted area (b) The result of method proposed in [16] implemented
in graphic software GIMP [25]

(c) Simple segmentation with highlighted repaired area (d) Fuzzy segmentation with highlighted repaired area

(e) Result of our original method [68] using the simple
segmentation from (c) and S-DHYT

(f) Result of proposed method using the fuzzy segmen-
tation from (d) and S-DHYT

Figure 3.26: Results comparison for the image with swan. GIMP method (a) copied many
artifacts into the body of the swan but it was able to nicely copy a texture of water. In our
approach the pattern of water texture was separated into many segments with homogeneous
color and therefore our original method with simple segmentation (c, e) was not able to
extrapolate the pattern of water texture. On the other hand the concealment of the body
of swan has very good visual appearance. Additionally error measurements in table 3.1
says that it is even the best result from all three methods. The proposed method with fuzzy
segmentation (d, f) combined the texture of water from few segments what resulted into more
realistic water texture, but it blurred a bit edge between swan body and water.
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(a) Original image with raft from Kodak set [33] with marked corrupted area

(b) The result of method proposed in [16] implemented in graphic software GIMP [25]

(c) Our original method with simple segmentation and S-DCT extrapolation

Figure 3.27: Results comparison of the method proposed by Daisy et al. [16] and our original
method for the image with raft. Zoomed part of the image shows that our method provides
better visual impression compared to Daisy et al. method [16] that copied into the result
several unfitting parts from the surroundings of the corrupted area.
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Table 3.2: Error measurements and timings for the sophisticated methods in Fig. 3.28, 3.29,
3.30 and 3.31.

Concealment Quality Measures (whole image) Time
Method MSE PSNR VQM SSIM [min]

Gradient
Image melding 2.30 44.51 0.33 0.9963 11:36

GSR 0.97 48.28 0.25 0.9921 16:06

Our method 1.91 45.32 0.31 0.9965 0:13

Cardinal
Image melding 3.28 42.97 0.41 0.9873 2:22

GSR 6.52 39.99 0.89 0.9839 6:30

Our method 10.57 37.89 0.73 0.9780 0:09

Lenna
Image melding 20.03 35.11 1.50 0.9749 6:42

GSR 29.00 33.51 1.74 0.9689 11:18

Our method 26.40 33.91 1.55 0.9633 0:16

Raft
Image melding 29.75 33.40 2.65 0.9755 10:14

GSR 26.54 33.89 2.84 0.9754 11:06

Our method 37.13 32.43 2.24 0.9698 0:28

1
difference can be seen in the concealment of the Lenna face in Fig. 3.25(d-g). By using fuzzy
segmentation we get better subjective results as you can see in the figure and also better ob-
jective results as you can see in the Table 3.1. In all four quality measures: Mean Squared
Error (MSE), Peak Signal-to-Noise Ratio (PSNR), DCT-based video quality metric (VQM)
and Structural similarity (SSIM), the method with fuzzy segmentation achieves better results.
On the other hand the time required to conceal errors has increased, as texture approximation
of larger regions takes longer.

Implementation of the fast patch-based method [15] with the addition of spatial blending
technique [16] in the graphic software GIMP [25] provides quite good results for simple
images (see the image of cardinal bird in Fig. 3.24(c)), but in the case of complex images
(the image of Lenna in Fig. 3.25(c), swan in Fig. 3.26(b) and raft in Fig. 3.27(b)), we can see
several artifacts in the result. The artifacts appear due to copying patches from surroundings
of the corrupted area. Our method avoids such artifacts by using segmentation.

3.2.5.2.2 Comparison with Sophisticated Inpainting Methods

The main part of the experiments was conducted to compare the performance and restoration
quality of our method with the state of the art methods: Image Melding [17] and Group-based

Sparse Representation for Image Restoration (GSR) [84].
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(a) Original gradient image with marked corrupted
area

(b) Image Melding method [17]

(c) GSR method [84] (d) Result of the proposed method using the fuzzy seg-
mentation and S-DCT extrapolation

Figure 3.28: Results comparison for the gradient image. Image Melding method (b) visually
provides very good result. The GSR method (c) resulted into some artifacts. The proposed
method (d) has nearly the same visual quality as Image Melding and in quality measure-
ments in table 3.2 it achieved even better results. On the other hand according to the quality
measures the GSR method is better than our method except of the SSIM index comparison.

(a) Original image of bird cardinal with marked cor-
rupted area

(b) Image Melding method [17]

(c) GSR method [84]] (d) Result of proposed method using the fuzzy segmen-
tation and S-DCT extrapolation

Figure 3.29: Results comparison for the image of the cardinal bird. Image Melding (b)
provides very good result. The GSR method (d) has problems with the right wing of the
bird. Our method (d) nicely connected wings and in table 3.2 it can be seen that the time
required to achieve comparable quality results is considerably shorter.
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(a) Original image of Lenna with marked corrupted
area

(b) Image Melding method [17]

(c) GSR method [84] (d) Result of proposed method using the fuzzy seg-
mentation and S-DHYT

Figure 3.30: Results comparison for the image of Lenna. Image Melding (b) has a very good
result. GSR (c) blurred some parts of the concealment result. The proposed method with
fuzzy segmentation (d) has visually better result compared to GSR method because there
are not blurred areas. Table 3.2 provides a comparison of objective error measurements and
timings for all results.

(a) Original Raft image with marked corrupted area (b) Image Melding method

(c) GSR method (d) Our original method with simple segmentation and
S-DCT extrapolation

Figure 3.31: Results comparison for the Raft image. The zoomed wild water shows that our
method provides the best visual impression within the shortest time for this image. Table 3.2
provides objective error measurements and timings.
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In case of the gradient image (Fig. 3.28) the proposed method has nearly the same visual
quality as Image Melding method and the objective error measurements comparison in Ta-
ble 3.2 shows that our method is even better than the Image Melding method in quality and
also in the time required to compute the result. The GSR method performs better in quality
measurements, but it has a visually worse result because of the artifacts and also the runtime
is more than 70× longer.

For the image of the cardinal bird (Fig. 3.29) the Image Melding method clearly provides
the best result. The GSR method has problems with the right wing of the bird, but the quality
measured by objective methods is still slightly better compared to our method. On the other
hand, our method required only several seconds to conceal the corrupted region compared to
the several minutes runtimes of Image Melding and GSR methods.

The face of Lenna (see Fig. 3.30) has many soft gradients but also fine features which are
difficult to be segmented. With the proposed fuzzy segmentation we were able to avoid
artifacts in the reconstructed face. We get better visual results compared to GSR which
blurred the hat of Lenna and some other parts of the image as well. Image Melding achieves
the best quality, but its runtime is not feasible in real-time.

The Raft image [33] contains both repetitive textures and unique objects (see Fig. 3.31).
Being 20× faster, our method still provides comparable visual quality in the corrupted stripe.
Even more, it reconstructs the water texture the best.
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Chapter 4

Texture Classification of Arbitrarily
Shaped Regions with an Application in
Image Segment Merging

Image over-segmentation as a pre-processing step of image segmentation splits the input im-
age into superpixels that are small compact regions with irregular shapes. The majority of
existing methods for texture feature extraction are not suitable for arbitrarily shaped regions.
Therefore, only color information can be used to classify and merge superpixels to create
final image segmentation. We propose a novel method for extracting texture features of ar-
bitrarily shaped image regions using orthogonal transforms. We introduce a mathematically
correct method for unifying spectral dimensions that is necessary for accurate comparison
and classification of spectra with different sizes. Our approach is based on the properties of
certain orthogonal transforms when inserting zeros into the spectrum. We found out which
orthogonal transforms possess this important property and also provide mathematical proofs
for our claims. The proposed method is particularly suitable for classifying areas with pe-
riodic and quasiperiodic textures. However, by utilizing luminance and chrominance this
method can be applied to and is suitable for any type of images.

In the following section we present a detailed analysis of the related work along with the de-
scription of advantages, disadvantages and applicability of the presented techniques divided
into widely accepted categories: geometrical approach, model-based approach, statistical
approach and signal processing approach. Section 4.2 first introduces the preliminary condi-
tions for application of our proposed novel method for texture features extraction along with
a detailed description of the important concepts such as basis set construction and spectral
dimension unification. Experiments on the luminance components of textures and a proposal
for construction of an optimal feature set for classification algorithms that are used to merge
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superpixels into segments are also located in section 4.2. Evaluation of the proposed method
in corrupted images and comparison of using various color spaces are located in the last
section (4.3) of this chapter.

4.1 Related Work

Shapiro et al. [55] distinguish two principal approaches to texture analysis: structural and
statistical. The structural approach defines textures as sets of primitives or elements, called
texels. Texels are regularly or nearly regularly distributed. The statistical approach defines
a texture as a quantitative measure of the intensities arrangement within a given area. While
the structural approach works sufficiently well for regular texture patterns, the statistical
approach, being simpler and more general, is more frequently used in practice.

Tuceryan and Jain [67] categorize texture analysis methods into four groups: geometrical,
model-based, statistical and signal processing methods. Using their categorization we re-
viewed some representative methods to identify their advantages, disadvantages and their
applicability to arbitrarily shaped regions.

4.1.1 Geometrical Method

Tuceryan and Jain [66] proposed one of the first texture analysis methods. It uses geometry-
based description of texture structure which starts by finding texels – small image regions
extractable through a simple process such as thresholding. The description of spatial rela-
tionship between neighboring texels is provided by a Voronoi tessellation of all texels. The
shape properties of the polygons in Voronoi tessellation are computed and used to cluster the
polygons into similarly textured regions. The algorithm is sensitive to small perturbations
in the texel locations if the texel placement is regular [66]. Therefore it is not often used in
practice.

4.1.2 Model-Based Methods

Model-based texture analysis methods create a model of an image that can be used both to
describe and to synthesize a texture [67]. The model should capture the substantial perceived
properties of the texture. Tuceryan and Jain [67] include Markov random fields and fractal
geometry in model-based methods. These methods are rather used for image modeling than
for texture classification.
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4.1.3 Statistical Methods

Statistical texture analysis methods deal with the spatial distribution of gray levels (or colors)
within a texture [55, 67, 60].

Local binary patterns (LBP) introduced by Ojala et al. [39] represent a simple methodol-
ogy which extracts features from a local binary partition. An eight digit binary number is
computed for each pixel p in the image. It is obtained by thresholding eight neighboring
pixels of p with the threshold set to the intensity of p. Once the whole image is analyzed, the
histogram of the obtained eight bit numbers represents the texture of the image. This method
is fast and therefore also used in many applications where time is a crucial factor. Its further
advantage is that it can be used to classify arbitrarily shaped regions. On the other hand, it
extracts only local features, thus it neither captures wider surroundings nor produces the best
results.

Co-occurrence matrices were introduced by Haralick et al. [27]. An element of co-occurrence
matrix in i-th row and j-th column specifies how many times the value i (usually a gray level
value) of the image co-occurs with the value j in some defined spatial relationship, e.g. for
a pair of horizontally neighboring pixels the value of the right one is j and the value of the
left one is i. The spatial displacement is defined by a displacement vector (r, c), where r

is the displacement in rows (downward) and c is the displacement in columns (to the right).
Therefore, multiple co-occurrence matrices can be generated for a single image.

Co-occurrence matrices can be used to classify arbitrarily shaped regions while being able
to capture the wider surroundings. However, it is up to the user to specify what displacement
vectors should be used to analyze possibly larger texture patterns.

4.1.4 Signal Processing Methods

Spatial domain filters like Roberts, Sobel and the Laplacian filter are used to find edges or
their directions in the input image. The idea behind these filters is to approximate the gradient
of an image through discrete differentiation. Edge density per unit area or density of edges
with specified directions are properties that can be used for very simple classification of
textures [24, 67, 44, 60]. These filters could be used to classify arbitrarily shaped regions,
however, e.g. Roberts filter suffers greatly from sensitivity to noise [18].

Fast Fourier transform (FFT), Discrete cosine transform (DCT), Discrete Walsh-Hadamard
transform (WHT) and Discrete Hartley transform (DHYT) are examples of frequency do-
main filters. Fourier transform represents frequency components of the time function by a
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sum of sine waves of different frequencies. The frequency components spectrum is the signal
representation in the frequency domain.

Monadjemi [38] proposed the Directional Walsh-Hadamard transform (DWHT) method which
uses oriented Hadamard based features to represent the directionality of a texture. In his ap-
proach, the Hadamard matrix stays constant but the image function is, as Monadjemi says,
rotated by α = (0◦,45◦,90◦,135◦). However, it is not a standard geometrical rotation. E.g.
rows of the A45◦ image are created by taking the pixels that sit in a diagonal (45◦) direction
in the image A0◦ . Therefore, rows of A45◦ contain the information at the defined directions
(angles). The extraction of row sequence information takes out the DWHT feature sets that
are used to classify texture. This method does not examine individual spectral components,
but only mean energy of directional sub-bands and therefore it is not accurate.

Image segmentation method proposed by Pun and Zhu [46] splits the input image into M×N

blocks of small size. DCT is applied on each block to calculate its energy feature that is
defined as the sum of a specified number of largest coefficients excluding the upper-left one.
The similarity distance between two blocks is then defined as the absolute value of difference
between their energy features. The main drawback of this method is that it splits the image
into square blocks. Therefore, boundaries of the final segments consist of line segments
and do not follow salience edges of the image. Additionally the sum of few largest DCT
coefficients is not very meaningful texture feature.

Pun et al. [45] replaced regular blocks by small regions created by a watershed transforma-
tion of the input image. The regions have irregular shapes and the DCT has to be imple-
mented on rectangle. Therefore, they proposed to find the maximum rectangle in a region
for substituting the texture of the whole region. Such substitutions often cause that certain
texture features are omitted, leading to accuracy loss. Another issue is that the rectangles do
not have same dimensions and therefore it is impossible to directly compare their spectral
coefficients. Pun et al. decided to divide DCT matrices into 9 parts by splitting each ma-
trix into 3 rows and 3 columns with even distributions. Then, they sum absolute values of
all elements in every part to get a nine dimensional feature vector of the matrix. However,
matching of the feature vectors obtained by averaging parts of DCT spectrum with larger and
smaller dimensions is mathematically incorrect.

4.2 Proposed Method for Feature Extraction

The basic assumptions of our proposed method for feature extraction are:
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1. Analyzed areas have arbitrary shapes, generally non-rectangular

2. The areas have a texture structure inside. The textures tend to have mostly high
frequency spectra, in small areas these can also be considered periodic or at least
quasiperiodic.

3. A real and sensible possibility to inscribe a rectangle into the area is limited.

4.2.1 Basic Assumptions and Method Description

The proposed method solves the problem of partitioning a 2D (after generalization also n-
dimensional) discrete image into multiple logically associated classes with the goal of estab-
lishing proper boundaries among various image elements. Furthermore it groups segments
forming the elements into classes with shared properties. In order to establish a mathemat-
ically tractable result, the entire process is partitioned into multiple stages to address all
relevant issues.

Similarly, as Pun et al. [45], the first step of the proposed method is to pre-process the image
using an efficient image over-segmentation technique such as SLIC [5] or gSLIC [48]. In
terms of the over-segmentation parameters, the segment sizes should have as little variance
as possible to decrease the computational demand in the latter stages. This is however not a
strong condition, as the method is capable of processing also segments with varying sizes.

Arbitrarily shaped segments represent a 2D image cutout containing internal texture struc-
ture. Pun et al. [45] use the maximum rectangle inscribed in the various segments to obtain
the texture sample from within the segment in order to optimize processing efficiency and
implement fast transform algorithms. For the same reasons and to avoid any possible infor-
mation loss that might occur, the arbitrarily shaped segments are in our method padded with
zeros in both dimensions to form the smallest circumscribing rectangle with both dimensions
being power of two. More details about this process and selection of suitable basis functions
we have already described in section 3.2.4.1, where we applied orthogonal transforms to
final segments. Here we apply the transforms to superpixels in order to classify them and
merge into segments. Each superpixel is transformed using discrete Walsh-Hadamard Trans-
form (WHT) or Separable Hartley Transform (CAS) [77] producing sets of YUV segment
spectra (similar to use of DCT in work of Singh [57] or Pun and Zhu [46]). In following
section 4.2.2 we compare extrapolation capability of five different orthogonal transforms.
Different transforms were purposefully chosen in order to create a basis for comparison of
the proposed method’s efficiency and reliability.

73



4.2. PROPOSED METHOD FOR FEATURE EXTRACTION

The next phase consists (in case of orthogonal transforms) of normalizing the spectra to
the block size, where the block size is the desired spectral dimension corresponding to the
original segment size. If the segment size condition during the segmentation process is not
respected, the spectra must be modified to reflect this reality. If the spectrum’s total number
of rows or columns is greater then the desired value, dimensional reduction is used, if the total
number of rows or columns is smaller than the desired value, dimensional expansion takes
place. Dimensional reduction however necessarily removes part of the spectral information,
while dimensional expansions retains it. Proofs of spectral row and column reduction and
extension for WHT and CAS is located in section 4.2.3.

K-means based classification requires vectors, therefore the obtained spectra must be trans-
formed into vectors using any of the number of available techniques. In order to respect
the frequency order, zig-zag method [81] was chosen in our implementation. Complications
only arise in case of CAS spectra, which are naturally ordered in a manner that would not
produce a sequence of continually increasing component frequencies after applying zig-zag.
Therefore spectral reordering of CAS spectral coefficients must take place first [41]. Zig-zag
is then applied to obtain a vectorized form of spectral coefficients where the DC coefficient is
the first value and highest component frequencies are the last values contained in the vector.

Vectorized spectra of all segments are input into the k-means classification. Multiple clas-
sification metrics can be used, however the best results are obtained with the Correlation,
Cosine and Squared Euclidean metrics, that are Mean Squared Error (MSE) metrics, while
the City Block metric, that is Mean Absolute Error (MAE) metric, fails to produce precise
results [8].

4.2.2 Selection of Orthogonal Transforms

In order to select orthogonal transforms with best possible extrapolation results we extrapo-
lated areas with various textures by five different orthogonal transforms. Results are shown in
Fig.4.2. For experiments the synthetically composed textures from the Brodatz [14] and Si-
moncelli [43] databases were used. To split images composed of textures into small textured
segments we used synthetic over-segmentation mask that can be found in Fig. 4.1. Based on
obtained results we decided to use successive Separable 2D Hartley Transform (S-DCCT)
and successive discrete Walsh-Hadamard transform (S-WHT) in our proposed method.

An important complication arises when the feature set is represented by magnitudes of the
spectral components - all of the areas must use the same number of coefficients. From
a mathematical perspective, specific position in the feature vector must correspond to the
same basis function. Using the described method rectangular areas with different sizes can
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Figure 4.1: Over-segmentation mask (left) used to split image composed of periodic textures
(right) into small textured segments. The same mask was also used for textured images in
Fig. \ref{fig:Results:-First-two

be produced and therefore they must be unified. One of the possible solutions to this problem
is exploiting the properties inherent to certain transforms, such as the property of periodifi-
cation in spatial domain by extending the spectrum with alternating zeros e.g. in Discrete
Fourier transform (DFT) method. Not every orthogonal transform possesses this property,
not even the most commonly used DCT II.

The next section contains a proof that the Hartley transform indeed possesses this property
which in 2D corresponds to its separable realization and we will refer to it as cas-cas and ab-
breviate it as DCCT. For the realization with successive calculation and extrapolation we are
using the acronym S-DCCT. Another transformation that possesses this important property
is the discrete Walsh-Hadamard transform (WHT). However, it should be noted that each of
these transforms requires a different method for spectral periodification.

4.2.3 Unification of the Spectral Dimensions

In this section we provide mathematical proofs of the property used for unification of spectral
components for different sized areas.

4.2.3.1 Discrete Walsh-Hadamard Transform - Natural (Hadamard) Order of Basis
Functions

Let
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segment A L S-DCT S-HT S-DCCT S-WHT S-DST 

       

       

       

       

       

       

Figure 4.2: Extrapolation of six selected segments from Fig. 4.1 using different basis sets:
successive Discrete cosine transform (S-DCT), successive Haar transform (S-HT), succes-
sive Separable 2D Hartley Transform (S-DCCT), successive discrete Walsh-Hadamard trans-
form (S-WHT) and successive Discrete sine transform (S-DST)
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x = (x0 x1 x2 ...xM−1)
T (4.1)

then:

X =
1
M

Hx = (X0 X1 X2 ...XM−1)
T (4.2)

Let

y =

(
x
x

)
(4.3)

then:

Y =
1

2M

(
H H
H −H

)(
x
x

)
=

(
X
0

)
(4.4)

4.2.3.2 Discrete Walsh-Hadamard Transform - Sequential Order of Basis Functions

By simple reordering of basis functions we get:

Y = (X0 00X1 X2 00X3 X4 ...00XM−1)
T (4.5)

4.2.3.3 Discrete Hartley Transform - Natural Order of Basis Functions

Discrete Hartley transform of 1D sequence is defined:

Xk =
1
M

M−1

∑
n=0

xn

[
cos
(

2πkn
M

)
+ sin

(
2πkn

M

)]
; k = 0, 1, ..., M−1 (4.6)

By using cas function defined as:

casα = cosα + sinα (4.7)
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we get:

Xk =
1
M

M−1

∑
n=0

xn

[
cas
(

2πkn
M

)]
; k = 0, 1, ..., M−1 (4.8)

Now we again define y as in Equation 4.3 and we get its Discrete Hartley transform

Yk =
1

2M

2M−1

∑
n=0

yn

[
cas
(

2πkn
2M

)]
; k = 0, 1, ..., 2M−1 (4.9)

We split the spectrum to even and odd components. Even components are

Y2l =
1

2M

2M−1

∑
n=0

yn

[
cas
(

2π2ln
2M

)]
; l = 0, 1, ..., M−1 (4.10)

Then we perform the following sequence of modifications

Y2l =
1

2M

[
M−1

∑
n=0

xncas
(

2πln
M

)
+

2M−1

∑
n=M

xn−Mcas
(

2πln
M

)]
(4.11)

Y2l =
1

2M

[
MXl +

M−1

∑
n=0
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(

2πl(n+M)

M

)]
(4.12)

Y2l =
1

2M

[
MXl +

M−1

∑
n=0

xncas
(

2πln
M

+2πl
)]

(4.13)

Then

Y2l =
1

2M
(MXl +MXl) = Xl (4.14)

Odd components are

Y(2l+1) =
1

2M

2M−1

∑
n=0

yn

[
cas
(

2π(2l +1)n
2M

)]
; l = 0, 1, ..., M−1 (4.15)

We make the following sequence of modifications
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(4.19)

Then

Y(2l+1) =
1

2M
·0 = 0 (4.20)

4.2.3.4 Discrete Hartley Transform - Sequential Order of Basis Functions

Simple reordering of basis functions yields:

Y = (X0 00X1 X2 00X3 X4 ...00XM−1)
T (4.21)

Discrete cosine transform II (DCT), discrete sinus transform (DST), discrete Haar transform
(HT) and many other prominent transforms can not be periodified in the described manner. It
is equally mathematically incorrect to unify the spectral dimension by averaging magnitudes
of the DCT spectrum, as done in method proposed by Pun et al. [45]. If the need to reduce
the feature vector dimensions arises, it is necessary to respect the properties described in this
chapter. The same applies for increasing the dimension.

4.2.4 Experiments on the Luminance Components of Textures

For purposes of the experiments we created images by combining textures from Brodatz [14]
and Simoncelli [43] databases. A total of 30 images with two, three, four and five grayscale
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Table 4.1: Results for periodic textures.

number of classes 2 3 4 5

average accuracy [%]

DCT 8x8 sqeuclidean 71,35 66,76 61,53 60,27
DCT 16x16 sqeuclidean 91,98 89,28 86,58 81,17

S-DCCT

sqeuclidean 99,91 99,73 97,39 97,03
correlation 99,91 99,55 99,19 99,01

cosine 99,91 99,46 96,39 96,13
city block 99,82 99,73 99,64 99,01

S-WHT

sqeuclidean 99,73 99,46 98,11 94,59
correlation 99,91 99,73 98,38 97,84

cosine 99,91 99,37 97,93 95,41
city block 99,64 99,46 97,21 94,41

1Table 4.2: Results for quasiperiodic textures.

number of classes 2 3 4 5

average accuracy [%]

DCT 8x8 sqeuclidean 73,51 71,17 62,25 61,26
DCT 16x16 sqeuclidean 87,48 85,86 82,07 71,26

S-DCCT

sqeuclidean 98,11 96,49 91,26 89,91
correlation 99,01 98,74 95,23 93,51

cosine 99,73 98,65 93,69 91,35
city block 89,19 64,14 57,75 57.48

S-WHT

sqeuclidean 98,02 96,22 91,08 87,75
correlation 96,22 95,14 94,05 89,28

cosine 96,13 95,32 94,68 88,92
city block 89,55 66,58 62,61 56.13

1textures were created. The feature vector then contains only the magnitudes of the AC spec-
tral coefficients vectorized by the zig-zag method. The spectral dimensions were further
unified to 32x32. The DC coefficient was not used in order to demonstrate how important
the AC coefficients are for the spectral description of the textures. The feature vector cre-
ated in this manner is independent from the mean luminance of the analyzed area. We then
compared the results with other techniques that use inscribed squares and magnitudes of the
2D DCT II spectral coefficients for classification. Synthetically over-segmented images use
the same mask with 37 different regions (Fig. 4.1). The k-means algorithm was used in the
classification process with different metrics. The results of each classification’s success are
located in Table 4.1 for periodic and in Table 4.2 for quasi-periodic structures. Some of the
classification results can be found in Fig. 4.3.
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original 2D DCT 8x8 

sqeuclidean 

2D DCT 16x16 

sqeuclidean 
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Figure 4.3: Classification results. For input original textured images (left column - first two
rows only periodic textures, the rest also quasiperiodic textures) we used different methods
to classify segments (cutout by the over-segmentation mask from Fig. 4.1) into specified
number of groups. First two methods 2D DCT 8x8 and 2D DCT 16x16 use only inscribed
squares with dimensions 8x8 and 16x16, respectively, into segments to find feature vectors.
These two methods does not provide good results (see Tables 4.1 and 4.2 for complete aver-
age results) because they extract only part of the segment texture to get the feature vector and
that yields to inaccurate results. The last three columns show results for successive DCCT
transform (S-DCCT) method that is able to extract texture features from whole arbitrarily
shaped segment and therefore it does not loose information compared to methods that in-
scribe squares into segments. To classify feature vectors obtained by S-DCCT transform
of segments we used k-means clustering with different metrics: Square Euclidean (abbre-
viated as sqeuclidean), Correlation, Cosine and City Block metric. See Tables 4.1 and 4.2
for complete average results of S-DCCT and successive discrete Walsh-Hadamard transform
(S-WHT)).
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4.2.5 Amendment of Color Information into the Feature Vectors

In this section we propose a method for construction of an optimal feature set for classifi-
cation algorithms that are used to merge superpixels into segments. Common color image
segmentation techniques merge superpixels using the clustering algorithms working with
an input in a form of features typically obtained only on the basis of the superpixel mean
value (average color) in one of the color spaces. Arbitrarily shaped superpixels are usually
problematic when considering the texture. It is often difficult to find an inscribed rectangle
capable of representative texture shape properties capture. We solved this problem by the
process proposed in the previous sections that describe a successive transformation to the
space of chosen orthogonal basis. The feature vector obtained this way contains primarily
information about texture. In order to ensure higher reliability of the classification process
it is important to also consider the color information of superpixels in the form of three
additional features.

We used the color space YUV, specifically the AC spectrum coefficients of the luminance
(Y), mean luminance value (DC coefficient) and two additional values in the form of mean
chrominance components (U, V) included with equal weight. DC coefficients containing
color information remain in the feature vector even if its dimension is reduced by removing
the higher frequency AC components scanned in a zig-zag fashion:

FV = (YDC,UDC,VDC,AC1,AC2,AC3, ..., ACmax) (4.22)

The experimental results were obtained by applying the proposed method to images over-
segmented by SLIC algorithm proposed by Achanta et al. [5].

The main part of the experiments we performed on the bird cardinal image from the BSD500
[6] database (see Fig. 4.4 (a)) and the results can be seen in Fig. 4.5. The image was over-
segmented into 381 superpixels and the proposed algorithm was tested on a unified spectral
block size 16x16 obtained by the proposed procedure. An image whose segmentation into
superpixels corresponds exclusively to its color information was chosen purposefully. Super-
pixel merging requires also a classification approach based on the texture. The bird’s feathers
can in this context be considered as a quasiperiodic texture. The results clearly prove that
while the color based classification (only DC coefficient) prefers the object as a whole and in
case of some metrics also blends it to the background, the classification utilizing also spectral
AC luminance information and an identical number of target classes produces a more realistic
representation of the object’s structure and even separates it better from the background. To
ensure higher objectivity of the proposed method we did not use the condition for merging
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(a) (b) (c)

Figure 4.4: Process of image segmentation: (a) Original image of bird cardinal from the
BSD500 [6] database; (b) Over-segmented image using fast SLIC algorithm [5]; (c) Human
classification of SLIC superpixels into 7 classes.

only neighboring superpixels. The complete vector consisted of 256 spectral coefficient from
the luminance (Y) component and 2 DC coefficients of the chrominance components. As the
presented results demonstrate, it is unnecessary to use all available AC spectral coefficients
of the luminance to obtain best results. The most visually appealing results were achieved
using only 10 spectral coefficients of the Y components and 2 DC coefficients of the U and
V components using the k-means with correlation metric.
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sqeuclidean

YUV 256Y S-DCCT 10Y S-DCCT+UV 256Y S-DCCT+UV

correlation

YUV 256Y S-DCCT 10Y S-DCCT+UV 256Y S-DCCT+UV

cosine

YUV 256Y S-DCCT 10Y S-DCCT+UV 256Y S-DCCT+UV

Figure 4.5: Classification of superpixels from over-segmented bird cardinal image from Fig.
4.4 using various feature vectors and metrics. All results were obtained by k-means cluster-
ing of image superpixels into 7 classes. Results in the left column were produced by utilizing
only three mean color values of every superpixel, i.e. feature vector of every superpixel con-
tained only one luminance (Y) and two chrominance (U and V) values. In second column,
in contrary, color values were not used and the feature vector contained only spectral coef-
ficients from S-DCCT matrix. The best results were achieved when both YUV color and
spectral coefficients were included in feature vector for k-means classification. Additionally,
the usage of only 10 most important spectral coefficients instead of all 256 provides similar
or even better results.
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We performed several tests of the proposed method with different images. Here we show
results from testing of images with helicopter and giraffe (Fig. 4.6 and 4.7). From the results
we can say that by using spectral coefficients the classification reaches better quality.

(a) Original image with heli-
copter

(b) Over-segmentation by
SLIC algorithm [5]

(c) YUV (d) 256Y S-DCCT (e) 10Y S-DCCT + UV (f) 256Y S-DCCT + UV

Figure 4.6: Classification of superpixels from over-segmented image with helicopter (a, b)
using various feature vectors. All results were obtained by k-means clustering of superpixels
into 5 classes with City Block metric and the spectral dimensions were unified to 16x16. By
using all 256 spectral coefficients (d, f) the helicopter was clearly separated from the back-
ground regardless the use of the chrominance (U and V) values. Without spectral coefficients
(c) or with just 10 spectral coefficients (e) it was not possible.

(a) Original image with gi-
raffe

(b) Over-segmentation by
SLIC algorithm [5]

(c) YUV (d) 256Y S-DCCT + UV

Figure 4.7: Classification of superpixels from over-segmented image with giraffe (a, b) using
feature vectors with and without spectral coefficients. All results were obtained by k-means
clustering of superpixels into 5 classes with Square Euclidean metric and the spectral dimen-
sions were unified to 16x16. In case of classification without spectral coefficients (c) the
giraffe is mixed with background. In case of classification with spectral coefficients (d) the
result is much better.
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(a) (b)

Figure 4.8: Original image of bird cardinal with corrupted stripe in the middle marked by
black color (a) and its over-segmentation by SLIC algorithm [5] (b)

4.3 Evaluation of the Proposed Method in Corrupted Im-
ages and Comparison of Using Various Color Spaces

We made several experiments with classification of superpixels in corrupted images by using
different color spaces and we compare the results when the spectral information is and is not
used. Classification results on image with cardinal bird (Fig. 4.8 and 4.9) and image with
Lenna (Fig. 4.10) show that mainly in case of L*a*b* color space the adding of spectral
information is a big improvement. In our error concealment method (described in Chapter
3.2) we used only L*a*b* color values to decide whether to merge superpixels and these
results lead us to use also spectral information. However, extracting of texture features can be
time consuming, but we could still consider to use it at least for the image error concealment
where the speed of the algorithm is not so crucial as in the video error concealment.

Tests in YUV and HSL color spaces (Fig. 4.9 and 4.11) also achieve better quality with using
spectral information.
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(a) YUV (b) L*a*b* (c) HSL

(d) 1024Y S-DCCT + UV (e) 1024L* S-DCCT + a*b* (f) 1024L S-DCCT + HS

Figure 4.9: Classification of superpixels from the over-segmented image of the bird cardi-
nal from Fig. 4.8 using three different color spaces and the feature vectors with or without
spectral information. All results were obtained by k-means clustering of superpixels into 15
classes with correlation metric and the spectral dimensions were unified to 32x32. Results
in the first row (a-c) were produced by utilizing only three mean color values of every super-
pixel, i.e. feature vector of every superpixel contained only one luminance (Y or L(*)) and
two chrominance (U and V or a* and b* or H and S) values. In second row the feature vector
contained also spectral coefficients from S-DCCT matrix. The best results were achieved
when both color and spectral coefficients were included in the feature vectors. Added spec-
tral information to the YUV values (d) helped to properly segment right wing of the bird. In
case of the classification based only on the L*a*b* values (b) the wings of the bird were not
segmented at all. By adding the spectral information into the feature vector (e) the wings
were nicely segmented. In HSL color space there was not such success (c, f), but at least the
spectral information helped to separate the bird and the background.
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(a) Original image of Lenna with marked
corrupted area

(b) Over-segmentation of (a) by SLIC al-
gorithm [5]

(c) L*a*b* (d) 1024L* S-DCCT + a*b*

(e) 1024Y S-DCCT + UV (f) 1024L S-DCCT + HS

Figure 4.10: Results of the classification of superpixels from the over-segmented image of
Lenna (a, b). All results were obtained by k-means clustering of superpixels into 15 classes
with correlation metric and the spectral dimensions were unified to 32x32. Classification
result without spectral information in L*a*b* color space (c) is a big mess while the classi-
fication with spectral information in the same color space (d) provides a very good result. In
this result the mouth of Lenna is segmented the best from all results.
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4.3. EVALUATION OF THE PROPOSED METHOD IN CORRUPTED IMAGES AND
COMPARISON OF USING VARIOUS COLOR SPACES

(a) Original image with raft and marked cor-
rupted area

(b) Over-segmentation of (a) by SLIC algo-
rithm [5]

(c) YUV (d) 256Y S-DCCT + UV

(e) L*a*b* (f) 256L* S-DCCT + a*b*

(g) HSL (h) 256L S-DCCT + HS

Figure 4.11: Classification of superpixels from the over-segmented image with raft (a, b) us-
ing three different color spaces and the feature vectors with or without spectral information.
All results were obtained by k-means clustering of superpixels into 5 classes with Square
Euclidean metric and the spectral dimensions were unified to 16x16. Results in the left row
(c, e, g) were produced by utilizing only three mean color values of every superpixel. In the
right column (d, f, h) the feature vector contained also spectral coefficients from S-DCCT
matrix. In all three cases the added spectral information helped to separate the raft and people
from surrounding water.
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Chapter 5

Conclusions and Future Work

We proposed a new efficient and highly scalable method for image error concealment that
outperforms the fast methods in quality and produces results with comparable quality as the
sophisticated methods with run times of several orders of magnitude shorter.

The proposed algorithm for image error concealment utilizes a new approach to selective
texture extrapolation into the corrupted area based on a completed segmentation of the image.
Our key contribution is the extension of the shape error concealment techniques for single
objects to segmented images with each corrupted segment being a small object to conceal.
Connectivity of neighboring segments and of segment pieces cut by the lost area into several
pieces was one of the main challenges that we solved.

A precise segmentation of textures is very important, but not always possible. Discrete
segmentation fails for example for unsharp edges or gradients and therefore, we proposed to
use the fuzzy segmentation instead. With the fuzzy segmentation the soft edges and gradients
are maintained in the resulting concealed image.

Experimental results clearly demonstrate that by utilizing the segmentation we achieved a
big qualitative improvement of the error concealment capability of our texture aware method
over the frequency selective extrapolation [32, 54, 34] that extrapolates the texture from a
square window around the corrupted area.

Fast patch-based methods [15, 16], that copy patches from the surroundings of the lost area
very often create many artifacts. Our method avoids such artifacts thanks to the segmentation
step.

The sophisticated patch [17] and group-based [84] methods are in general able to provide
better results (although we found some exceptions), but their run-times are not feasible in
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real time applications such as video streaming. Our method is much more faster, but still
it should be speeded up to be suitable not just for error concealment of images and offline
videos but also for concealment of streamed videos and animations.

There are some suggestions how to improve the performance of our method and to achieve
interactive frame rates. The most time consuming part of our algorithm is the texture approx-
imation by a successive orthogonal transform. The first improvement would be to implement
it in parallel, because currently we run the transform for each of the three dimensions of the
color space sequentially.

In our experiments we used successive Discrete cosine transform (S-DCT) and successive
separable 2D Hartley Transform with sequentially ordered basis functions (S-DCCT) that
are implemented in the SAPC program [70]. In this implementation the S-DCT has twice as
long computational time compared to S-DCCT, because it computes the S-DCT transform
through the fast Fourier transform algorithm of roughly twice the length. By substituting the
algorithm with a faster one it would be possible to reach the run times of S-DCCT or even
faster.

The third suggestion how to speed up our algorithm is to split large segments into smaller
parts before approximating their textures, because texture approximation of smaller areas
performed in parallel takes shorter. Splitting the segments should not be discrete but it should
allow overlaps to avoid border artifacts.

Except for the speed up improvements there are also improvements possible in usability
and quality. The input of our method is not only the corrupted image, but there are also
some input parameters that should be defined by the user. Further work could also include
a detailed testing to find the best possible input parameters in order to make a robust default
preset. A better solution could be to define and implement automatic adaptation of the input
parameters according to the image properties. That would be a nice usability enhancement.

For the quality enhancement we have three suggestions:

1. As it was already mentioned the approximation and extrapolation of the texture is
performed separately for each channel of the color space. Firstly we tried to apply
the transformation to RGB color channels, but the results were not satisfactory. After
we switched to the YCbCr color space the achieved results improved. It would be
interesting to test also other color spaces, e.g. CIE L∗a∗b∗ or YUV.

2. In case of the corrupted video frames it would be possible to use also information from
previous uncorrupted or already concealed frames in order to achieve better quality re-
sults. It could help mainly for frames with larger corrupted parts. For the segmentation
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it would be possible to utilize supervoxels instead of superpixels. The merging process
of the supervoxels would be very similar to the merging of the superpixels. But the
following step of the shape error concealment is not so easy then. In the 2D case we
first find the segment boundaries and then we approximate them by curves in order to
find tangent vectors in border points next to the lost area. With a tangent in each of
the two border endpoints we can construct the concealment curve to smoothly join the
endpoints. In the 3D case we need to find borders of segments as well, but we need to
approximate each segment border by a patch going across the uncorrupted (previous)
frames and not just by a curve for each frame separately. It is necessary in order to
predict the change of the segment shape in corrupted (current) frame. The prediction
of the shape change can be done by the extrapolation of the patch in the time domain
into the current frame. The extrapolation result strongly depends on the quality of the
matching of the segment shapes from each frame. The main difficulty is high elas-
ticity of the shape changes in time. During our research we tried to develop a shape
registration algorithm and we also tried to use the bUnwarpJ [7] library for the shape
registration, but there is still a place for improvements. An important aspect of this
concept is that in the last step, being the texture approximation and extrapolation, we
can use some of the orthogonal transforms in a similar way as in 2D case. Here we
would just apply it on 3D texture.

3. As the last quality improvement we suggest to merge superpixels into the segments
based not just on their color, but also based on their textures. For that we proposed a
novel spectral method for constructing the feature vector of superpixels that considers
their inner texture and color as well. Conclusions for the proposed method are listed
below.

In the second part of the thesis we introduced a new spectral method to construct the fea-
ture vector of arbitrarily shaped areas by considering both their inner texture and color. Our
method is based on successive selective approximation from a set of orthogonal basis func-
tions. Not every set of basis functions is suitable for realistic texture extrapolation. There-
fore, we made several experiments to chose appropriate orthogonal basis function sets. Be-
cause the over-segmented areas do not have the same dimensions, it is necessary to first unify
the spectral dimensions before the classification process. This leads to the problem of deter-
mining which basis sets fulfill the Fourier signal periodization conditions for inserting zeros
between spectral coefficients. The requirement of this condition is based on the assumption
that in a sufficiently small area its texture becomes periodic or quasiperiodic. We proved that
such a property is exhibited not only by the Discrete Fourier Transform (DFT), but also by
the separable Hartley transform and also the fastest transform used the in technical practice
based on the Hadamard basis.
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However, proper basis set selection and spectral unification alone do not solve all issues
associated with the problem of proper feature extraction based on texture. We also proposed
to extend the feature set commonly used for color images by typical information about the
color. We examined the proposed method’s efficiency in three color spaces: YUV, L*a*b*
and HSL. By adding spectral information into the feature vector we always achieved better
results and in the case of the CIE L∗a∗b∗ color space the difference was the most visible.
Our experimental results confirm that the proposed method can be successfully used to give
solutions for multiple problems such as texture classification and image segment merging.
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• David Běhal (34%), Jana Dadová (33%), and Ivana Uhlíková (33%). 3D Extension of
WEB. In WSCG 2011 - Poster Papers Proceedings, 19th International Conference in

Central Europe on Computer Graphics, Visualization and Computer Vision, Plzeň, p.
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Appendix

A Compact Disc (CD) containing the created application together with instructions how to
use it is attached to the thesis. In the CD there is also the written part of the thesis in PDF
format.
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